

SS EN 13791 : 2009 (2016) EN 13791 : 2007, IDT

(ICS 91.080.40)

SINGAPORE STANDARD Assessment of in-situ compressive strength in structures and precast concrete components

(This national standard is the identical implementation of EN 13791 : 2007 and is adopted with permission of CEN, Avenue Marnix 17, 1000 Brussels)

Confirmed 2016

Published by

SS EN 13791 : 2009 (2016) EN 13791 : 2007, IDT

(ICS 91.080.40)

SINGAPORE STANDARD

Assessment of in-situ compressive strength in structures and precast concrete components

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

ISBN 978-981-4278-19-5

SS EN 13791 : 2009 (2016)

This Singapore Standard was approved by the Building and Construction Standards Committee on behalf of the Standards Council of Singapore on 9 September 2009.

First published, 2009

The Building and Construction Standards Committee appointed by the Standards Council consists of the following members:

		Name	Capacity
Chairman	:	Mr Goh Peng Thong	Member, Standards Council
1 st Dy Chairman	:	Mr Lee Chuan Seng	Member, Standards Council
2 nd Dy Chairman	:	Mr Tan Tian Chong	Member, Standards Council
Secretary	:	Mr James Choo Sou Yong	SPRING Singapore
Members	:	Mr Boo Geok Kwang	Singapore Civil Defence Force
		Er. Chan Ewe Jin	Institution of Engineers, Singapore
		Mr Chan Yew Kwong	Ministry of Manpower
		Mr Paul Fok	Land Transport Authority
		Mr Goh Ngan Hong	Singapore Institute of Surveyors and Valuers
		Mr Anselm Gonsalves	National Environment Agency
		Mr Desmond Hill	Singapore Contractors Association Limited
		Mr Benedict Lee Khee Chong	Singapore Institute of Architects
		Ms Andris Leong	Building and Construction Authority
		Assoc Prof Leong Eng Choon	Nanyang Technological University
		Dr Lim Lan-Yuan	The Association of Property and Facility Managers
		Mr McDonald Low	Real Estate Developers' Association of Singapore
		Mr Larry Ng Lye Hock	Urban Redevelopment Authority
		Assoc Prof Gary Ong Khim Chye	National University of Singapore
		Mr Davis Ong Wee Choon	Singapore Manufacturers' Federation
		Er. Shum Chee Hoong	Housing & Development Board
		Dr Tan Guan	Association of Consulting Engineers, Singapore
On antad		Mr Tang Pei Luen	JTC Corporation
Co-opted Member	:	Dr Tam Chat Tim	Individual Capacity

The Technical Committee on Building Structure and Sub-structure appointed by the Building and Construction Standards Committee and responsible for the preparation of this standard consists of representatives from the following organisations:

	Name	Capacity
Chairman :	Dr Tan Guan	Member, Building and Construction Standards Committee
Co-Chairman :	Mr Chew Keat Chuan	Building and Construction Authority
Secretary :	Ms Lee Hiok Hoong	SPRING Singapore

Members	: Er. Chan Ewe Jin	Institution of Engineers, Singapore
	Dr Chen Enyi	Cement and Concrete Association of Singapore
	LTC Cheok Poh Chin	Singapore Civil Defence Force
	Dr Sujit Ghosh	Ready Mix Concrete Association of Singapore
	Dr Ho Nyok Yong	Singapore Contractors Association Ltd
	Mr Ho Wan Boon	Singapore Structural Steel Society
	Mdm Neo Bian Hong	Land Transport Authority
	Assoc Prof Gary Ong Khim Chye	Singapore Concrete Institute
	Mr Sze Thiam Siong	Setsco Services Pte Ltd
	Ms Angeline Tan Bee Hoon	Housing & Development Board
	Mr Tan Jui Teck	CPG Corporation Pte Ltd
	Assoc Prof Tan Kiang Hwee	National University of Singapore
	Mr Tang Pei Luen	JTC Corporation
	Assoc Prof Susanto Teng	Nanyang Technological University
Co-opted		
Member	: Dr Tam Chat Tim	Individual Capacity
	Dr Tan Teng Hooi	Individual Capacity

The following Technical Experts contributed in their *individual capacity* to the preparation of this standard:

Dr Tam Chat Tim (Taskforce Leader) Mr Willie Kay (Co-taskforce Leader) Mr Koa Soon Dee, Raymond Mr Lim Huay Bak Mr Lu Jin Ping Mr Lung Hian Hao Dr Ng Kee Ee Mr Tan Tze Tiong

The organisations in which the experts are involved are:

Admaterials Technologies Pte Ltd Building and Construction Authority GBAD Services Pte Ltd Housing & Development Board National University of Singapore Setsco Services Pte Ltd Singapore Concrete Institute WAK Consultants Pte Ltd

(blank page)

Page

Contents

National Foreword	6
Introduction	_ 7

CLAUSES

1	Scope
2	Normative references
3	Terms and definitions
4	Symbols and abbreviations
5	Principles
6	Characteristic in-situ compressive strength in relation to compressive strength class
7	Assessment of characteristic in-situ compressive strength by testing of cores
8	Assessment of characteristic in-situ compressive strength by indirect methods
9	Assessment where conformity of concrete based on standard tests is in doubt
10	Assessment report

ANNEXES

А	(informative) Factors influencing core strength	22
В	(informative) Factors influencing results by indirect test methods	24
С	(informative) Concepts concerning the relationship between in-situ strength and strength from standard test specimens	25
D	(informative) Guidelines for planning, sampling and evaluation of test results when assessing in-situ strength	26
Nation	al Annex ZZA (informative) Additional guidance for UK users	29
Nation	al Annex ZZB (informative) Additional guidance for Singapore users	31

TABLES

1	Minimum characteristic in-situ compressive strength for the SS EN 206-1 compressive strength classes	12
2	Margin <i>k</i> associated with small numbers of test results	14
3	Coefficient <i>k</i> ₁ dependent on the number of paired tests	19
FIGU	RES	
1	Principle for obtaining the relationship between in-situ compressive strength and indirect test data	17
2	Basic curve for rebound hammer test	18
3	Basic curve for ultrasonic pulse velocity test	18
4	Basic curve for pull out force test	19
Biblio	graphy	28

National Foreword

This Singapore Standard was prepared by the Technical Committee on Building Structure and Substructure under the purview of the Building and Construction Standards Committee.

This standard is identical to EN 13791 : 2007 'Assessment of in-situ compressive strength in structures and precast concrete components' with the addition of Annex ZZB – 'Additional guidance for Singapore users', and adopted with permission of CEN, Rue de Stassart 36, B-1050 Brussels. 100 mm and 150 mm cubes are the standard specimens for compressive strength testing in Singapore and Annex ZZB provides more specific guidance for use in Singapore. The principles are in agreement with those in EN 13791 : 2007.

Annex ZZB, prepared for Singapore users, is to be considered together with Annex ZZA (informative) – 'Additional guidance for UK users', adopted from BS EN 13791 : 2007.

Acknowledgement is made for the use of information from the above reference.

At the time of publication, this standard is expected to be used as a reference in the Building and Construction Authority's 'Approved document – Acceptable solutions'.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.

^{3.} Compliance with a SS or TR does not exempt users from any legal obligations.

Introduction

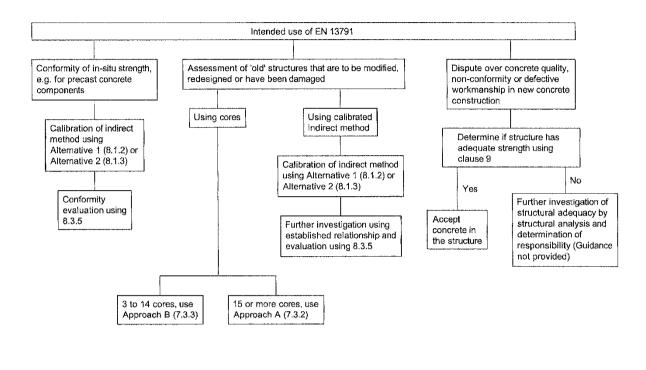
This Singapore Standard provides techniques for estimating in-situ compressive strength in concrete structures and precast concrete components. Testing in-situ strength takes into account the effects of both the materials and execution (compaction, curing, etc.).

These tests do not replace concrete testing according to SS EN 206-1.

SS EN 206-1 refers to the guidance of this standard for assessing the strength in structures and precast concrete components.

The following examples illustrate where this estimate of in-situ strength of concrete may be required:

- when an existing structure is to be modified or redesigned;
- to assess structural adequacy when doubt arises about the compressive strength in the structure due to defective workmanship, deterioration of concrete due to fire or other causes;
- when an assessment of the in-situ concrete strength is needed during construction;
- to assess structural adequacy in the case of non-conformity of the compressive strength obtained from standard test specimens;
- assessment of conformity of the in-situ concrete compressive strength when specified in a specification or product standard.


Where identified in this standard, national provisions are permitted or required.

An outline of the procedures for these different uses of this standard is given in Flowchart 1.

For specific production conditions and constituent materials, development of economic design where permitted by national provisions may be possible through the assessing the partial safety factor, γ_c from knowledge of the in-situ compressive strength and the strength of standard test specimens.

When assessing compressive strengths in cases other than checking the quality of the concrete or the workmanship during execution or before accepting the structure for use, the appropriate reduction in the partial safety factor should be determined on a case-by-case basis according to national provisions.

SS EN 13791 : 2009 (2016)

Flowchart 1

8

Assessment of in-situ compressive strength in structures and precast concrete components

1 Scope

This Singapore Standard:

- gives methods and procedures for the assessment of the in-situ compressive strength of concrete in structures and precast concrete components;
- provides principles and guidance for establishing the relationships between test results from indirect test methods and the in-situ core strength;
- provides guidance for the assessment of the in-situ concrete compressive strength in structures or precast concrete components by indirect or combined methods.

This Singapore Standard does not include the following cases:

- where indirect methods are used without correlation to core strength;
- assessment based on cores less than 50 mm in diameter;
- assessment based on less than 3 cores;
- use of microcores.

NOTE – In these cases provisions valid in place of use apply.

This Singapore Standard is not for the assessment of conformity of concrete compressive strength in accordance with SS EN 206-1 or EN 13369 except as indicated in SS EN 206-1 : 2009, 5.5.1.2 or 8.4.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

SS EN 206-1, Concrete – Part 1: Specification, performance, production and conformity

EN 12350-1, Testing fresh concrete – Part 1: Sampling

EN 12390-1, Testing hardened concrete – Part 1: Shape, dimensions and other requirements for specimens and moulds

EN 12390-2, Testing hardened concrete – Part 2: Making and curing specimens for strength tests

EN 12390-3, Testing hardened concrete – Part 3: Compressive strength of test specimens

EN 12504-1, Testing concrete in structures – Part 1: Cored specimens – Taking, examining and testing in compression

EN 12504-2, Testing concrete in structures – Part 2: Non-destructive testing – Determination of rebound number

EN 12504-3, Testing concrete in structures - Part 3: Determination of pull-out force

EN 12504-4, Testing concrete in structures – Part 4: Determination of ultrasonic pulse velocity