

SS 619 : Part 1 : 2016 IEC 61439-1:2011, MOD

(ICS 29.130.20)

SINGAPORE STANDARD Low-voltage switchgear and controlgear assemblies

- Part 1 : General rules

[Modified adoption of IEC 61439-1 : 2011]

Published by

SS 619 : Part 1 : 2016 IEC 61439-1:2011, MOD (ICS 29.130.20)

SINGAPORE STANDARD

Low-voltage switchgear and controlgear assemblies

- Part 1 : General rules

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© IEC [2011] – All rights reserved © Enterprise Singapore [2016] ISBN 978-981-4726-69-6

This Singapore Standard was approved by the Electrical and Electronic Standards Committee on behalf of the Singapore Standards Council on 6 October 2016.

First published, 2017

The Electrical and Electronic Standards Committee, appointed by the Standards Council, consists of the following members:

		Name	Capacity
Chairman	:	Er. Peter Leong Weng Kwai	Member, Standards Council
Deputy Chairmen	:	Mr Cheong Tak Leong Er. Tan Hak Khoon	SPRING Singapore Energy Market Authority
Advisor		Mr Renny Yeo Ah Kiang	Individual Capacity
		Mr Jason Low	SPRING Singapore
Secretary	:		
Members	:	Dr Chua Sze Wey	Agency for Science, Technology and Research
		Assoc Prof Gooi Hoay Beng	Nanyang Technological University
		Er. Hashim Bin Mansoor	Building and Construction Authority
		Assoc Prof Ko Chi Chung	National University of Singapore
		Mr Koh Liang Hock	SP PowerGrid Ltd
		Er. Lim Ah Hee	Housing & Development Board
		Er. Lim Say Leong	Singapore Business Federation
		Er. Ling Shiang Yun / Er. Kenneth Liu	Association of Consulting Engineers Singapore
		Mr Ng Kin Ming	Singapore Electrical Contractors and Licensed Electrical Workers Association
		Er. Ong Ser Huan	Institution of Engineers Singapore
		Dr Thomas Reindl	Solar Energy Research Institute of Singapore
		Mr Sim Geok Seng	SPRING Singapore
		Mr Sim Wee Meng	Land Transport Authority
		Mr Tan Boon Chong	Singapore Manufacturing Federation
		SAC Christopher Tan Eng Kiong	Singapore Civil Defence Force
		Mr Alfred Tan Lai Seng	Singapore Electrical Trades Association
		Mr Justin Wu	National Environment Agency
Co-opted Member	:	Mr Chong Weng Hoe	Individual Capacity

The Technical Committee on Power Systems and Utilisation, appointed by the Electrical and Electronic Standards Committee and responsible for the preparation of this standard, consists of representatives from the following organisations:

		Name	Capacity
Chairman	:	Er. Tan Hak Khoon	Deputy Chairman, Electrical and Electronic Standards Committee
Deputy Chairman	:	Mr Koh Liang Hock	SP PowerGrid Ltd
Secretary	:	Mr Md Johan Jamil	SPRING Singapore
Members	:	Mr Chan Chee Hin Mr Chia Song Khoon	Ngee Ann Polytechnic Land Transport Authority
		Prof Lalit Kumar Goel	Nanyang Technological University
		Mr Ken G Jung	Singapore Electrical Contractors and Licensed Electrical Workers Association
		Er. Adeline Koh	Association of Consulting Engineers Singapore
		Mr Lim Bock Teck	Singapore Polytechnic
		Er. Lim Say Leong	Singapore Electrical Trades Association
		Mr Seng Chin Chye	Institute of Technical Education
		Er. Soh Swee Seng	Housing & Development Board
		Mr Tan Boon Chong	Singapore Manufacturing Federation
		Er. Tan Chong Poh	SP Services Ltd
		Dr Teo Tee Hui / Dr Tan Yen Kheng	Institution of Engineers Singapore
		Dr Thomas Reindl	National University of Singapore
		Mr Yee Peng Huey	JTC Corporation
Co-opted Member	:	Er. Peter Toi	Individual Capacity

The Working Group appointed by the Technical Committee to assist in the preparation of this standard comprises of the following experts who contribute in their *individual capacity*:

Convenor : Er. Lim Say Leong Members : Mr P K Srinivasan Iyer Er. Timmy Mok Kam-Tim Mr Ng Kim Leong Mr Ng Kin Ming Mr Soh Lo San			Name
Er. Timmy Mok Kam-Tim Mr Ng Kim Leong Mr Ng Kin Ming	Convenor	:	Er. Lim Say Leong
Er. Soh Swee Seng Mr Sung Puay Kiang Er. Tan Hak Khoon Mr Tan Hiok Pheng Mr Wong Chee Kian Mr James Wong Ms Rao Yimin	Members	:	Er. Timmy Mok Kam-Tim Mr Ng Kim Leong Mr Ng Kin Ming Mr Soh Lo San Er. Soh Swee Seng Mr Sung Puay Kiang Er. Tan Hak Khoon Mr Tan Hiok Pheng Mr Wong Chee Kian Mr James Wong

The experts of the Working Group are nominated/recommended by the following organisations:

ABB Pte Ltd CPG Consultants Pte Ltd Energy Market Authority Housing & Development Board Institution of Engineers Singapore JTC Corporation Land Transport Authority Singapore Electrical Contractors and Licenced Electrical Workers Association Singapore Electrical Testing Services Singapore Electrical Trades Association SP PowerGrid Ltd Sunlight Electrical Pte Ltd TUV SUD PSB Pte Ltd

CONTENTS

NA	TIONA	L FOREWORD	11
FOI	REWC)RD	12
INT	RODU	JCTION	15
1	Scop	e	16
2	Norm	ative references	16
3	Term	s and definitions	20
	3.1	General terms	20
	3.2	Constructional units of ASSEMBLIES	21
	3.3	External design of ASSEMBLIES	22
	3.4	Structural parts of ASSEMBLIES	23
	3.5	Conditions of installation of ASSEMBLIES	
	3.6	Insulation characteristics	
	3.7	Protection against electric shock	
	3.8	Characteristics	
	3.9	Verification	
4		Manufacturer/user	
4	•	ools and abbreviations	
5		ace characteristics	
	5.1	General	-
	5.2	Voltage ratings	
		 5.2.1 Rated voltage (U_n) (of the ASSEMBLY) 5.2.2 Rated operational voltage (U_e) (of a circuit of an ASSEMBLY) 	
		5.2.2 Rated operational voltage (U_{e}) (of a circuit of an ASSEMBLY) 5.2.3 Rated insulation voltage (U_{i}) (of a circuit of an ASSEMBLY)	
		5.2.4 Rated impulse withstand voltage (U_{imp}) (of the ASSEMBLY)	
	5.3	Current ratings	
		5.3.1 Rated current of the ASSEMBLY (<i>I</i> _{nA})	
		5.3.2 Rated current of a circuit (<i>I</i> _{nc})	
		5.3.3 Rated peak withstand current (<i>I</i> _{pk})	
		5.3.4 Rated short-time withstand current (<i>I</i> _{CW}) (of a circuit of an ASSEMBLY)	36
		5.3.5 Rated conditional short-circuit current of an ASSEMBLY (I_{CC})	36
	5.4	Rated diversity factor (RDF)	
	5.5	Rated frequency (<i>f</i> _n)	
•	5.6	Other characteristics	
6		nation	
	6.1	ASSEMBLY designation marking	
	6.2	Documentation	
		6.2.1 Information relating to the ASSEMBLY6.2.2 Instructions for handling, installation, operation and maintenance	
	6.3	6.2.2 Instructions for handling, installation, operation and maintenance Device and/or component identification	
7		ce conditions	
,	7.1	Normal service conditions	
	1.1	7.1.1 Ambient air temperature	
		7.1.2 Humidity conditions	
		5	20

		7.1.3	Pollution degree	39
		7.1.4	Altitude	40
	7.2	Specia	I service conditions	40
	7.3	Condit	ions during transport, storage and installation	41
8	Cons	truction	al requirements	41
	8.1	Streng	th of materials and parts	41
		8.1.1	General	41
		8.1.2	Protection against corrosion	41
		8.1.3	Properties of insulating materials	41
		8.1.4	Resistance to ultra-violet radiation	42
		8.1.5	Mechanical strength	42
		8.1.6	Lifting provision	42
	8.2	Degree	e of protection provided by an ASSEMBLY enclosure	42
		8.2.1	Protection against mechanical impact	42
		8.2.2	Protection against contact with live parts, ingress of solid foreign bodies and water	42
		8.2.3	ASSEMBLY with removable parts	43
	8.3	Cleara	nces and creepage distances	43
		8.3.1	General	43
		8.3.2	Clearances	44
		8.3.3	Creepage distances	44
	8.4	Protect	tion against electric shock	45
		8.4.1	General	45
		8.4.2	Basic protection	45
		8.4.3	Fault protection	46
		8.4.4	Protection by total insulation	49
		8.4.5	Limitation of steady-state touch current and charge	
		8.4.6	Operating and servicing conditions	50
	8.5	Incorpo	pration of switching devices and components	51
		8.5.1	Fixed parts	
		8.5.2	Removable parts	52
		8.5.3	Selection of switching devices and components	
		8.5.4	Installation of switching devices and components	
		8.5.5	Accessibility	
		8.5.6	Barriers	
		8.5.7	Direction of operation and indication of switching positions	
		8.5.8	Indicator lights and push-buttons	
	8.6	Interna	I electrical circuits and connections	
		8.6.1	Main circuits	
		8.6.2	Auxiliary circuits	
		8.6.3	Bare and insulated conductors	54
		8.6.4	Selection and installation of non-protected live conductors to reduce the possibility of short-circuits	
		8.6.5	Identification of the conductors of main and auxiliary circuits	55
		8.6.6	Identification of the protective conductor (PE, PEN) and of the neutral conductor (N) of the main circuits	56

	8.7	Cooling]	56
	8.8	Termin	als for external conductors	56
9	Perfo	rmance	requirements	58
	9.1	Dielect	ric properties	58
		9.1.1	General	58
		9.1.2	Power-frequency withstand voltage	58
		9.1.3	Impulse withstand voltage	58
		9.1.4	Protection of surge protective devices	58
	9.2	Tempe	rature rise limits	58
	9.3	Short-o	circuit protection and short-circuit withstand strength	59
		9.3.1	General	59
		9.3.2	Information concerning short-circuit withstand strength	59
		9.3.3	Relationship between peak current and short-time current	60
		9.3.4	Co-ordination of protective devices	60
	9.4	Electro	magnetic compatibility (EMC)	61
10	Desig	gn verifi	cation	61
	10.1	Genera	al	61
	10.2	Strengt	th of materials and parts	62
		10.2.1	General	62
		10.2.2	Resistance to corrosion	62
		10.2.3	Properties of insulating materials	64
		10.2.4	Resistance to ultra-violet (UV) radiation	65
		10.2.5	Lifting	66
		10.2.6	Mechanical impact	66
		10.2.7	Marking	66
	10.3	Degree	e of protection of ASSEMBLIES	66
	10.4	Cleara	nces and creepage distances	67
	10.5	Protect	tion against electric shock and integrity of protective circuits	67
		10.5.1	Effectiveness of the protective circuit	67
		10.5.2	Effective earth continuity between the exposed conductive parts of the ASSEMBLY and the protective circuit	67
		10.5.3	Short-circuit withstand strength of the protective circuit	68
	10.6	Incorpo	pration of switching devices and components	68
		10.6.1	General	68
		10.6.2	Electromagnetic compatibility	68
	10.7	Interna	I electrical circuits and connections	69
	10.8	Termin	als for external conductors	69
	10.9		ric properties	
			General	
		10.9.2	Power-frequency withstand voltage	69
			Impulse withstand voltage	
			Testing of enclosures made of insulating material	
			External operating handles of insulating material	
	10.10		ation of temperature rise	
			I General	
		10.10.2	2Verification by testing	72

10.10.3 Derivation of ratings for similar variants 10.10.4 Verification assessment	
10.10.4 vernication assessment	
10.11.1 General	
10.11.2Circuits of ASSEMBLIES which are exempted from the verification of the short-circuit withstand strength	
10.11.3 Verification by comparison with a reference design – Utilising a check list	
10.11.4 Verification by comparison with a reference design – Utilising	05
calculation	84
10.11.5Verification by test	
10.12 Electromagnetic compatibility (EMC)	89
10.13 Mechanical operation	
11 Routine verification	89
11.1 General	
11.2 Degree of protection of enclosures	90
11.3 Clearances and creepage distances	
11.4 Protection against electric shock and integrity of protective circuits	
11.5 Incorporation of built-in components	
11.6 Internal electrical circuits and connections	
11.7 Terminals for external conductors	
11.8 Mechanical operation	
11.9 Dielectric properties	
11.10 Wiring, operational performance and function	91
Annex A (normative) Minimum and maximum cross-section of copper conductors suitable for connection to terminals for external conductors (see 8.8)	100
Annex B (normative) Method of calculating the cross-sectional area of protective conductors with regard to thermal stresses due to currents of short duration	101
Annex C (informative) User information template	102
Annex D (informative) Design verification	106
Annex E (informative) Rated diversity factor	
Annex F (normative) Measurement of clearances and creepage distances	
Annex G (normative) Correlation between the nominal voltage of the supply system	
and the rated impulse withstand voltage of the equipment	123
Annex H (informative) Operating current and power loss of copper conductors	125
Annex I (Void)	127
Annex J (normative) Electromagnetic compatibility (EMC)	128
Annex K (normative) Protection by electrical separation	135
Annex L (informative) Clearances and creepage distances for North American region	138
Annex M (informative) North American temperature rise limits	139
Annex N (normative) Operating current and power loss of bare copper bars	140
Annex O (informative) Guidance on temperature rise verification	
Annex P (normative) Verification of the short-circuit withstand strength of busbar	
structures by comparison with a tested reference design by calculation	
Annex ZA (informative) Design verification	151

Bibliography	153
Figure E.1 – Typical ASSEMBLY	109
Figure E.2 – Example 1: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0,8	111
Figure E.3 – Example 2: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0,8	112
Figure E.4 – Example 3: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0,8	113
Figure E.5 – Example 4: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0,8	114
Figure E.6 – Example of average heating effect calculation	116
Figure E.7 – Example graph for the relation between the equivalent RDF and the parameters at intermittent duty at $t_1 = 0.5$ s, $I_1 = 7^*I_2$ at different cycle times	116
Figure E.8 – Example graph for the relation between the equivalent RDF and the parameters at intermittent duty at $I_1 = I_2$ (no starting overcurrent)	
Figure F.1 – Measurement of ribs	122
Figure J.1 – Examples of ports	
Figure O.1 – Temperature rise verification methods	146
Figure P.1 – Tested busbar structure (TS)	147
Figure P.2 – Non tested busbar structure (NTS)	148
Figure P.3 – Angular busbar configuration with supports at the corners	150
Table 1 – Minimum clearances in air ^a (8.3.2)	92
Table 2 – Minimum creepage distances (8.3.3)	92
Table 3 – Cross-sectional area of a copper protective conductor (8.4.3.2.2)	93
Table 4 – Conductor selection and installation requirements (8.6.4)	93
Table 5 – Minimum terminal capacity for copper protective conductors (PE, PEN) (8.8)	93
Table 6 – Temperature-rise limits (9.2)	94
Table 7 – Values for the factor n^{a} (9.3.3)	95
Table 8 – Power-frequency withstand voltage for main circuits (10.9.2)	96
Table 9 – Power-frequency withstand voltage for auxiliary and control circuits (10.9.2)	96
Table 10 – Impulse withstand test voltages (10.9.3)	97
Table 11 – Copper test conductors for rated currents up to 400 A inclusive (10.10.2.3.2)	97
Table 12 – Copper test conductors for rated currentsfrom 400 A to 4 000 A(10.10.2.3.2)	98
Table 13 – Short-circuit verification by comparison with a reference design: check list	
(10.5.3.3, 10.11.3 and 10.11.4)	98
(10.5.3.3, 10.11.3 and 10.11.4) Table 14 – Relationship between prospective fault current and diameter of copper wire	
Table 14 – Relationship between prospective fault current and diameter of copper	99

Table B.1 – Values of k for insulated protective conductors not incorporated in cables, or bare protective conductors in contact with cable covering	101
Table C.1 – Template	102
Table D.1 – List of design verifications to be performed	106
Table E.1 – Examples of loading for an ASSEMBLY with a rated diversity factor of 0,8	110
Table E.2 – Example of loading of a group of circuits (Section B – Figure E.1) with a rated diversity factor of 0,9	115
Table E.3 – Example of loading of a group of circuits (Sub-distribution board – FigureE.1) with a rated diversity factor of 0,9	115
Table F.1 – Minimum width of grooves	118
Table G.1 – Correspondence between the nominal voltage of the supply system and the equipment rated impulse withstand voltage	124
Table H.1 – Operating current and power loss of single-core copper cables with a permissible conductor temperature of 70 °C (ambient temperature inside the ASSEMBLY: 55 °C)	125
Table H.2 – Reduction factor k_1 for cables with a permissible conductor temperature of 70 °C (extract from IEC 60364-5-52:2009, Table B.52.14)	126
Table J.1 – Tests for EMC immunity for environment A (see J.10.12.1)	132
Table J.2 – Tests for EMC immunity for environment B (see J.10.12.1)	133
Table J.3 – Acceptance criteria when electromagnetic disturbances are present	134
Table K.1 – Maximum disconnecting times for TN systems	137
Table L.1 – Minimum clearances in air	138
Table L.2 – Minimum creepage distances	138
Table M.1 – North American temperature rise limits	139
Table N.1 – Operating current and power loss of bare copper bars with rectangular cross-section, run horizontally and arranged with their largest face vertical, frequency 50 Hz to 60 Hz (ambient temperature inside the ASSEMBLY: 55 °C, temperature of the conductor 70 °C).	140
Table N.2 – Factor k_4 for different temperatures of the air inside the ASSEMBLY and/or for the conductors	141

National Foreword

This Singapore Standard was prepared by the Working Group appointed by the Technical Committee on Power Systems and Utilisation under the direction of the Electrical and Electronic Standards Committee.

This standard is a modified adoption of IEC 61439-1: 2011 'Low-voltage switchgear and controlgear assemblies', published by the International Electrotechnical Commission (IEC). The modifications to suit local context are given as follows:

- References or requirements relating to PEN conductors are to be disregarded as they are currently not permitted for use in Singapore.
- Table D.1 in Annex D is to be replaced by the table in Annex ZA. This modification indicates that a manufacturer's declaration of compliance is accepted in accordance to ISO/IEC 17050-1.

Attention is drawn to the following:

- 1. Where appropriate, the words 'International Standard' shall be read as 'Singapore Standard'.
- 2. The reference to the following IEC standards in the text shall be replaced by 'SS CP 5 : 1998 Code of practice for electrical installations and its Amendment 1 : 2008':

IEC 60364 (all parts) IEC 60364-4-41:2005 IEC 60364-4-44:2007 IEC 60364-5-52:2009 IEC 60364-5-53:2001 IEC 60364-5-54:2011

- 3. The IEC standard 'IEC 61439 : Part 3' referred to in the text shall be replaced by SS 619-3.
- 4. The comma has been used throughout as a decimal marker in IEC 61439-1 whereas in Singapore Standards it is a practice to use a full point on the baseline as the decimal marker.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR ASSEMBLIES –

Part 1: General rules

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61439-1 has been prepared by subcommittee 17D: Low-voltage switchgear and controlgear assemblies, of IEC technical committee 17: Switchgear and controlgear.

This second edition cancels and replaces the first edition published in 2009. It constitutes a technical revision.

This second edition includes the following significant technical changes with respect to the last edition of IEC 61439-1:

- revision of service conditions in Clause 7;
- numerous changes regarding verification methods in Clause 10;

- modification of routine verification in respect of clearances and creepage distances (see 11.3);
- adaption of the tables in Annex C and Annex D to the revised requirements and verification methods;
- revision of the EMC requirements in Annex J;
- shifting of tables from Annex H to new Annex N;
- new Annex O with guidance on temperature rise verification;
- new Annex P with a verification method for short-circuit withstand strength (integration of the content of IEC/TR 61117);
- update of normative references;
- general editorial review.

NOTE It should be noted that when a dated reference to IEC 60439-1 is made in another Part of the IEC 60439 series of assembly standards not yet transferred into the new IEC 61439 series, the superseded IEC 60439-1 still applies (see also the Introduction below).

The text of this standard is based on the following documents:

FDIS	Report on voting
17D/441/FDIS	17D/446/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

In this standard, terms written in small capitals are defined in Clause 3.

The "in some countries" notes regarding differing national practices are contained in the following subclauses:

5.4 8.2.2 8.3.2 8.3.3 8.4.2.3 8.5.5 8.6.6 8.8 9.2 10.11.5.4 10.11.5.6.1 Annex L Annex M

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 61439 series, under the general title *Low-voltage switchgear and controlgear assemblies*, can be found on the IEC website.

13

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

The purpose of this standard is to harmonize as far as practicable all rules and requirements of a general nature applicable to low-voltage switchgear and controlgear assemblies (ASSEMBLIES) in order to obtain uniformity of requirements and verification for ASSEMBLIES and to avoid the need for verification to other standards. All those requirements for the various ASSEMBLIES standards which can be considered as general have therefore been gathered in this basic standard together with specific subjects of wide interest and application, e.g. temperature rise, dielectric properties, etc.

For each type of low-voltage switchgear and controlgear assembly only two main standards are necessary to determine all requirements and the corresponding methods of verification:

- this basic standard referred to as "Part 1" in the specific standards covering the various types of low-voltage switchgear and controlgear assemblies;
- the specific ASSEMBLY standard hereinafter also referred to as the relevant ASSEMBLY standard.

For a general rule to apply to a specific ASSEMBLY standard, it should be explicitly referred to by quoting the relevant clause or sub-clause number of this standard followed by "Part 1" e.g. "9.1.3 of Part 1".

A specific ASSEMBLY standard may not require and hence need not call up a general rule where it is not applicable, or it may add requirements if the general rule is deemed inadequate in the particular case but it may not deviate from it unless there is substantial technical justification detailed in the specific ASSEMBLY standard.

Where in this standard a cross-reference is made to another clause, the reference is to be taken to apply to that clause as amended by the specific ASSEMBLY standard, where applicable.

Requirements in this standard that are subject to agreement between the ASSEMBLY manufacturer and the user are summarised in Annex C (informative). This schedule also facilitates the supply of information on basic conditions and additional user specifications to enable proper design, application and utilization of the ASSEMBLY.

For the new re-structured IEC 61439 series, the following parts are envisaged:

- a) IEC 61439-1: General rules
- b) IEC 61439-2: Power switchgear and controlgear ASSEMBLIES (PSC-ASSEMBLIES)
- c) IEC 61439-3: Distribution boards (to supersede IEC 60439-3)
- d) IEC 61439-4: ASSEMBLIES for construction sites (to supersede IEC 60439-4)
- e) IEC 61439-5: ASSEMBLIES for power distribution (to supersede IEC 60439-5)
- f) IEC 61439-6: Busbar trunking systems (to supersede IEC 60439-2)
- g) IEC/TR 61439-0: Guidance to specifying ASSEMBLIES.

This list is not exhaustive; additional Parts may be developed as the need arises.

LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR ASSEMBLIES –

Part 1: General rules

1 Scope

NOTE 1 Throughout this standard, the term ASSEMBLY (see 3.1.1) is used for a low-voltage switchgear and controlgear assembly.

This part of the IEC 61439 series lays down the definitions and states the service conditions, construction requirements, technical characteristics and verification requirements for low-voltage switchgear and controlgear assemblies.

This standard cannot be used alone to specify an ASSEMBLY or used for a purpose of determining conformity. ASSEMBLIES shall comply with the relevant part of the IEC 61439 series; Parts 2 onwards.

This standard applies to low-voltage switchgear and controlgear assemblies (ASSEMBLIES) only when required by the relevant ASSEMBLY standard as follows:

- ASSEMBLIES for which the rated voltage does not exceed 1 000 V in case of a.c. or 1 500 V in case of d.c.;
- stationary or movable ASSEMBLIES with or without enclosure;
- ASSEMBLIES intended for use in connection with the generation, transmission, distribution and conversion of electric energy, and for the control of electric energy consuming equipment;
- ASSEMBLIES designed for use under special service conditions, for example in ships and in rail vehicles provided that the other relevant specific requirements are complied with;

NOTE 2 Supplementary requirements for ASSEMBLIES in ships are covered by IEC 60092-302.

- ASSEMBLIES designed for electrical equipment of machines provided that the other relevant specific requirements are complied with.

NOTE 3 Supplementary requirements for ASSEMBLIES forming part of a machine are covered by the IEC 60204 series.

This standard applies to all ASSEMBLIES whether they are designed, manufactured and verified on a one-off basis or fully standardised and manufactured in quantity.

The manufacture and/or assembly may be carried out other than by the original manufacturer (see 3.10.1).

This standard does not apply to individual devices and self-contained components, such as motor starters, fuse switches, electronic equipment, etc. which will comply with the relevant product standards.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-2-2:2007, Environmental testing - Part 2-2: Tests - Test B: Dry heat

IEC 60068-2-11:1981, Basic environmental testing procedures – Part 2-11: Tests – Test Ka: Salt mist

IEC 60068-2-30:2005, Environmental testing – Part 2-30: Tests – Test Db: Damp heat, cyclic (12 + 12 h cycle)

IEC 60073:2002, Basic and safety principles for man-machine interface, marking and identification – Coding principles for indicators and actuators

IEC 60085:2007, Electrical insulation – Thermal evaluation and designation

IEC 60216 (all parts), Electrical insulating materials – Properties of thermal endurance

IEC 60227-3:1993, Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 3: Non-sheathed cables for fixed wiring

IEC 60245-3:1994, Rubber insulated cables – Rated voltages up to and including 450/750 V – Part 3: Heat resistant silicone insulated cables

IEC 60245-4:1994, Rubber insulated cables – Rated voltages up to and including 450/750 V – Part 4: Cords and flexible cables

IEC 60364 (all parts), Low-voltage electrical installations

IEC 60364-4-41:2005, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock

IEC 60364-4-44:2007, Low-voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances

IEC 60364-5-52:2009, Low-voltage electrical installations – Part 5-52: Selection and erection of electrical equipment – Wiring systems

IEC 60364-5-53:2001, Electrical installations of buildings – Part 5-53: Selection and erection of electrical equipment – Isolation, switching and control

IEC 60364-5-54:2011, Low-voltage electrical installations – Part 5-54: Selection and erection of electrical equipment – Earthing arrangements and protective conductors

IEC 60439 (all parts), Low-voltage switchgear and controlgear assemblies

IEC 60445:2010, Basic and safety principles for man-machine interface, marking and identification – Identification of equipment terminals, conductor terminations and conductors

IEC 60447:2004, Basic and safety principles for man-machine interface, marking and identification – Actuating principles

IEC 60529:1989, Degrees of protection provided by enclosures (IP Code)¹

¹ There is a consolidated edition 1.1 (2001) that includes IEC 60529 (1989) and its amendment 1 (1999).

IEC 60664-1:2007, Insulation coordination for equipment within low-voltage systems – Part 1: *Principles, requirements and tests*

IEC 60695-2-10:2000, Fire Hazard testing – Part 2-10: Glowing/hot-wire based test methods – Glow-wire apparatus and common test procedure

IEC 60695-2-11:2000, Fire hazard testing – Part 2-11: Glowing/hot-wire based test methods – Glow-wire flammability test method for end-products

IEC 60695-11-5:2004, Fire hazard testing – Part 11-5: Test flames – Needle-flame test method – Apparatus, confirmatory test arrangement and guidance

IEC 60865-1:1993, Short-circuit currents – Calculation of effects – Part 1: Definitions and calculation methods

IEC 60890:1987, A method of temperature-rise assessment by extrapolation for partially typetested assemblies (PTTA) of low-voltage switchgear and controlgear

IEC 60947-1:2007, Low-voltage switchgear and controlgear – Part 1: General rules

IEC 61000-4-2:2008, Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test

IEC 61000-4-3:2006, Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio frequency, electromagnetic field immunity test²

IEC 61000-4-4:2004, Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test

IEC 61000-4-5:2005, Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test

IEC 61000-4-6:2008, Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields

IEC 61000-4-8:2009, Electromagnetic compatibility (EMC) – Part 4-8: Testing and measurement techniques – Power frequency magnetic field immunity test

IEC 61000-4-11:2004, Electromagnetic compatibility (EMC) – Part 4-11: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations immunity tests

IEC 61000-4-13:2002, Electromagnetic compatibility (EMC) – Part 4-13: Testing and measurement techniques – Harmonics and interharmonics including mains signalling at a.c. power port, low-frequency immunity tests³

IEC 61000-6-4:2006, Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments⁴

² There is a consolidated edition 3.2 (2010) that includes IEC 61000-4-3 (2006) and amendment 1 (2007) and amendment 2 (2010).

³ There is a consolidated edition 1.1 (2009) that includes IEC 61000-4-13 (2002) and its amendment 1 (2009).

IEC 61082-1, Preparation of documents used in electrotechnology - Part 1:Rules

IEC 61180 (all parts), High-voltage test techniques for low-voltage equipment

IEC/TS 61201:2007, Use of conventional touch voltage limits – Application guide

IEC 61439 (all parts), Low-voltage switchgear and controlgear assemblies

IEC 62208, Empty enclosures for low-voltage switchgear and controlgear assemblies – General requirements

IEC 62262:2002, Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code)

IEC 81346-1, Industrial systems, installations and equipment and industrial products – Structuring principles and reference designations – Part 1: Basic rules

IEC 81346-2, Industrial systems, installations and equipment and industrial products – Structuring principles and reference designations – Part 2: Classification of objects and codes for classes

CISPR 11:2009, Industrial, scientific and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement⁵

CISPR 22, Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement

ISO 178:2001, Plastics – Determination of flexural properties

ISO 179 (all parts), Plastics – Determination of Charpy impact strength

ISO 2409:2007, Paints and varnishes - Cross-cut test

ISO 4628-3:2003, Paints and varnishes – Evaluation of degradation of coatings – Designation of quantity and size of defects, and of intensity of uniform changes in appearance – Part 3: Assessment of degree of rusting

ISO 4892-2:2006, Plastics – Methods of exposure to laboratory light sources – Part 2: Xenonarc lamps

⁴ There is a consolidated edition 2.1 (2011) that includes IEC 61000-6-4 (2006) and its amendment 1 (2010).

⁵ There is a consolidated edition 5.1 (2010) that includes CISPR 11 (2009) and its amendment 1 (2010).