

SS IEC 62717 : 2015 (ICS 29.140.99)

SINGAPORE STANDARD LED modules for general lighting – Performance requirements

[Identical adoption of IEC 62717:2014]

Published by

(ICS 29.140.99)

SINGAPORE STANDARD LED modules for general lighting – Performance requirements

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© IEC [2014] – All rights reserved © Enterprise Singapore [2015] ISBN 978-981-4726-17-7

This Singapore Standard was approved by the Electrical and Electronic Standards Committee on behalf of the Singapore Standards Council on 4 December 2015.

First published, 2016

The Electrical and Electronic Standards Committee, appointed by the Standards Council, consists of the following members:

		Name	Capacity
Chairman	:	Er. Peter Leong Weng Kwai	Member, Standards Council
Deputy Chairmen	:	Mr Cheong Tak Leong Er. Tan Hak Khoon	SPRING Singapore Energy Market Authority
Advisor	:	Mr Renny Yeo Ah Kiang	Individual Capacity
Secretary	:	Mr Jason Low	SPRING Singapore
Members	:	Dr Chua Sze Wey	Agency for Science, Technology and Research
		Assoc Prof Gooi Hoay Beng	Nanyang Technological University
		Er. Hashim Bin Mansoor	Building & Construction Authority
		Assoc Prof Ko Chi Chung	National University of Singapore
		Mr Koh Liang Hock	SP PowerGrid Ltd
		Er. Lim Ah Hee	Housing & Development Board
		Er. Lim Say Leong	Singapore Business Federation
		Er. Ling Shiang Yun / Er. Kenneth Liu	Association of Consulting Engineers Singapore
		Mr Ng Kin Ming	Singapore Electrical Contractors and Licensed Electrical Workers Association
		Er. Ong Ser Huan	Institution of Engineers Singapore
		Mr Sim Geok Seng	SPRING Singapore
		Mr Sim Wee Meng	Land Transport Authority
		Mr Tan Boon Chong	Singapore Manufacturing Federation
		Mr Christopher Tan Eng Kiong	Singapore Civil Defence Force
		Mr Alfred Tan Lai Seng	Singapore Electrical Trades Association
		Dr Timothy Michael Walsh	Solar Energy Research Institute of Singapore
		Mr Justin Wu	National Environment Agency
Co-opted Member	:	Mr Chong Weng Hoe	Individual Capacity

The Technical Committee on Building Facilities and Services, appointed by the Electrical and Electronic Standards Committee and responsible for the preparation of this standard, consists of representatives from the following organisations:

		Name	Capacity
Chairman	:	Er. Kenneth Liu	Member, Electrical and Electronic Standards Committee
Deputy Chairman	:	Er. Hashim Bin Mansoor	Building & Construction Authority
Secretary	:	Mr Allan Koh	SPRING Singapore
Members	:	Mr Cai Lin Fan	Land Transport Authority
Members	:	Dr Pritam Das	National University of Singapore
		Mr David Goh King Siang	Singapore Manufacturing Federation
		Mr Ken G Jung	Singapore Electrical Contractors and Licensed Electrical Workers Association
		Ms Adeline Koh	Association of Consulting Engineers Singapore
		Mr Benedict Koh Yong Pheng	Fire Safety Managers' Association (Singapore)
		Mr Lim Kian Chye	Energy Market Authority
		Mr Ng Eng Sin	JTC Corporation
		Mr Pang Tong Teck	Singapore Civil Defence Force
		Mr K Seshadri	Individual Capacity
		Mr Sim Kooi Chuan / Mr Koh Tien Beng	Singapore Institute of Architects
		Assoc Prof So Ping Lam	Nanyang Technological University
		Er. Tan Kok Koon	Housing & Development Board
		Mr Jack Tay / Mr Foo Ming Yann	Singapore Electrical Trades Association
		Dr Zhou Yi	Institute of Engineers Singapore

The Working Group, appointed by the Technical Committee to assist in the preparation of this standard, comprises the following experts who contribute in their individual capacity:

Name

Co-Convenors	:	Mr K Seshadri
		Mr Tan Heng Khoon
Members	:	Mr Cheong Weng Yip
		Assoc Prof Choo Fook Hoong
		Er. Loh Wah Kay
		Er. Ong Ser Huan
		Mr Somesh Kumar Rakshit
		Maj Tan Chung Yee
		Mr Tay Hooi Seng
		Dr Ronnie Teo
		Mr James Wong
		Mr Yeo Kok Beng

The organisations in which the experts of the Working Group are involved are:

Agency for Science, Technology and Research Enkon International Consulting Engineers Pte Ltd Gritti Consulting Pte Ltd Housing & Development Board Land Transport Authority M & P Consulting Engineers Maxspid Enterprise Pte Ltd Nanyang Technological University Philips Electronics (Singapore) Pte Ltd Singapore Civil Defence Force TLS Design Pte Ltd TUV SUD PSB Pte Ltd

CONTENTS

NA	TIONA	L FOREWORD	. 9
FC	DREWO	RD	. 9
IN	TRODU	CTION	12
1	Scop	е	13
	1.1	General	13
	1.2	Statement	14
2	Norm	ative references	14
3	Term	s and definitions	15
4	Mark	ing	18
	4.1	Mandatory marking	18
	4.2	Additional marking	
5	Dime	nsions	20
6	Test	conditions	20
	6.1	General test conditions	20
	6.2	Creation of module families to reduce test effort	21
	6.2.1	General	21
	6.2.2	Variations within a family	21
	6.2.3	1 5 ,	
7	Elect	rical LED module input	23
	7.1	LED module power	
	7.2	Displacement factor (u.c.)	
8	0	output	
	8.1	Luminous flux	
	8.2	Luminous intensity distribution, peak intensity and beam angle	
	8.2.1	General	
	8.2.2		
	8.2.3 8.2.4	,	
	8.2.4		
		Luminous efficacy	
9		maticity coordinates, correlated colour temperature (CCT) and colour	20
-		ering	25
	9.1	Chromaticity coordinates	25
	9.2	Correlated colour temperature (CCT)	26
	9.3	Colour rendering index (CRI)	26
10	LED	module life	27
	10.1	General	
	10.2	Lumen maintenance	
	10.3	Endurance tests	
	10.3.		
	10.3.	1 5 5	
	10.3.	3 Supply switching test	30

11 Verification 31 12 Information for luminaire design 31 Annex A (normative) Method of measuring LED module characteristics 32 A.1 General 32 A.2 Electrical characteristics 33 A.2.1 Test voltage, current or power 33 A.3.2 Ageing 33 A.3.1 Test voltage, current or power 33 A.3.2 Luminous flux 33 A.3.3 Luminous intensity distribution 34 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values. 34 A.3.7 Chromation for luminaire design 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 36 C.4 General 36 C.4 Combined gradual and abrupt light output degradation 37 C.5 Overview of LED lifetime metrics and related lighting product grou		10.3.	Accelerated operation life test	. 30
Annex A (normative) Method of measuring LED module characteristics 32 A.1 General 32 A.2 Electrical characteristics 33 A.2.1 Test voltage, current or power 33 A.3 Photometric characteristics 33 A.3 Photometric characteristics 33 A.3.1 Test voltage, current or power 33 A.3.2 Luminous flux 33 A.3.3 Luminous intensity distribution 34 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 34 A.3.8 Beam angle 34 A.3.7 Chromaticity coordinate values 34 A.3.8 Colour rendering 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37	11	Verif		
Annex A (normative) Method of measuring LED module characteristics 32 A.1 General 32 A.2 Electrical characteristics 33 A.2.1 Test voltage, current or power 33 A.3 Photometric characteristics 33 A.3 Photometric characteristics 33 A.3.1 Test voltage, current or power 33 A.3.2 Luminous flux 33 A.3.3 Luminous intensity distribution 34 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 34 A.3.8 Beam angle 34 A.3.7 Chromaticity coordinate values 34 A.3.8 Colour rendering 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37	12	Infor	mation for luminaire design	. 31
A.1 General 32 A.2 Electrical characteristics 33 A.2.1 Test voltage, current or power 33 A.3 Photometric characteristics 33 A.3 Photometric characteristics 33 A.3 Photometric characteristics 33 A.3.1 Test voltage, current or power 33 A.3.2 Luminous intensity distribution 34 A.3.3 Luminous intensity distribution 34 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 34 A.3.7 Chromaticity coordinate values 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 35 A.1 General 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Difetime metric values 41 <	Ann		-	
A.2 Electrical characteristics 33 A.2.1 Test voltage, current or power 33 A.2.2 Ageing 33 A.3 Photometric characteristics 33 A.3.1 Test voltage, current or power 33 A.3.2 Luminous flux 33 A.3.3 Luminous flux 33 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 34 A.3.6 Colour rendering 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime specification of the photometric code 43 Annex D (normative) Explanation of the photometric code 43 Annex D (normative) Explanation of the photometric code 43 Annex C (informative)				
A.2.1 Test voltage, current or power 33 A.2.2 Ageing 33 A.3 Photometric characteristics 33 A.3 Test voltage, current or power 33 A.3.2 Luminous intensity distribution 34 A.3.3 Luminous intensity distribution 34 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 34 A.3.6 Colour rendering 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 36 C.1 General 36 C.2 Life time specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metrics and related lighting product groups </td <td>-</td> <td></td> <td></td> <td></td>	-			
A.2.2 Ageing 33 A.3 Photometric characteristics 33 A.3.1 Test voltage, current or power 33 A.3.2 Luminous flux 33 A.3.3 Luminous flux 33 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 34 A.3.6 Colour rendering 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 35 B.1 Temperature stability 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metrics and related lighting product groups 40 C.6 Example lifetime metric values 41 Annex E (,			
A.3 Photometric characteristics 33 A.3.1 Test voltage, current or power 33 A.3.2 Luminous flux 33 A.3.3 Luminous intensity distribution 34 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metrics and related lighting product groups 40 C.6 Example lifetime metric values 41 Annex D (normative) Explanation of the photometric code </td <td></td> <td></td> <td></td> <td></td>				
A.3.1 Test voltage, current or power	Δ			
A.3.2 Luminous flux 33 A.3.3 Luminous intensity distribution 34 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 34 Annex B (informative) Information for luminaire design 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 35 Annex C (informative) Explanation of recommended LED procuct lifetime metrics 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime metric values 41 Annex D (normative) Explanation of the photometric code 43 Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.3 Measurements requirements 45 E.3.1 Measurement circuit and supply source 45	,			
A.3.3 Luminous intensity distribution 34 A.3.4 Peak intensity 34 A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values. 34 Annex B (informative) Information for luminaire design 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 35 Annex C (informative) Explanation of recommended LED procuct lifetime metrics 36 C.1 General 36 C.2 Life time specification for arrupt light output degradation 37 C.3 Lifetime specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metrics and related lighting product groups 40 C.6 Example lifetime metric values 41 Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.3 Measurements for measurement equipment 45			5 /	
A.3.4 Peak intensity				
A.3.5 Beam angle 34 A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 34 Annex B (informative) Information for luminaire design 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 35 Annex C (informative) Explanation of recommended LED procuct lifetime metrics 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 34 Annex D (normative) Explanation of the photometric code 43 Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.2 Phase shift angle definition 44 E.3.1 Measurements requirements 45			,	
A.3.6 Colour rendering 34 A.3.7 Chromaticity coordinate values 34 Annex B (informative) Information for luminaire design 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 35 Annex C (informative) Explanation of recommended LED procuct lifetime metrics 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metric values 41 Annex D (normative) Explanation of the photometric code 43 Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.2 Phase shift angle definition 44 E.3.1 Measurement requirements. 45 E.3.2 Requirements for m			•	
A.3.7 Chromaticity coordinate values			5	
Annex B (informative) Information for luminaire design 35 B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 35 Annex C (informative) Explanation of recommended LED procuct lifetime metrics 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metrics and related lighting product groups 40 C.6 Example lifetime metric values 41 Annex E (normative) Explanation of the photometric code 43 Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.2 Phase shift angle definition 44 E.3.1 Measurements requirements 45 E.3.1 Measurement circuit and supply source 45 E.3.2 Requirements for measurement equipment 45 E.3.3 Test condit			5	
B.1 Temperature stability 35 B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 35 Annex C (informative) Explanation of recommended LED procuct lifetime metrics 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metrics and related lighting product groups 40 C.6 Example lifetime metric values 41 Annex D (normative) Explanation of the photometric code 43 Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.2 Phase shift angle definition 44 E.3 Measurements requirements 45 E.3.1 Measurement circuit and supply source 45 E.3.2 Requirements for measurement equipment 45 E.3.3 Test conditions 45 Annex F (informative)	Ann			
B.2 Binning procedure of white colour LEDs 35 B.3 Ingress protection 35 Annex C (informative) Explanation of recommended LED procuct lifetime metrics 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metrics and related lighting product groups 40 C.6 Example lifetime metric values 41 Annex D (normative) Explanation of the photometric code 43 Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.2 Phase shift angle definition 44 E.3 Measurements requirements 45 E.3.1 Measurement circuit and supply source 45 E.3.3 Test conditions 45 Annex F (informative) Explanation of displacement factor 46 F.1 General 46 F.2 Recommended values for displacement factor				
B.3 Ingress protection 35 Annex C (informative) Explanation of recommended LED procuct lifetime metrics 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metrics and related lighting product groups 40 C.6 Example lifetime metric values 41 Annex D (normative) Explanation of the photometric code 43 Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.2 Phase shift angle definition 44 E.3 Measurements requirements 45 E.3.1 Measurement for measurement equipment 45 E.3.2 Requirements for measurement equipment 45 E.3.3 Test conditions 45 Annex F (informative) Explanation of displacement factor 46 F.1 General 46 F.2 Recommended values				
Annex C (informative) Explanation of recommended LED procuct lifetime metrics 36 C.1 General 36 C.2 Life time specification for gradual light output degradation 37 C.3 Lifetime specification for abrupt light output degradation 38 C.4 Combined gradual and abrupt light output degradation 39 C.5 Overview of LED lifetime metrics and related lighting product groups 40 C.6 Example lifetime metric values 41 Annex D (normative) Explanation of the photometric code 43 Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.2 Phase shift angle definition 44 E.3 Measurements requirements 45 E.3.1 Measurement circuit and supply source 45 E.3.2 Requirements for measurement equipment 45 E.3.3 Test conditions 45 Annex F (informative) Explanation of displacement factor 46 F.1 General 46 F.2 Recommended values for displacement factor 46 F.2 Recommended values for displacement fac				
C.1General36C.2Life time specification for gradual light output degradation37C.3Lifetime specification for abrupt light output degradation38C.4Combined gradual and abrupt light output degradation39C.5Overview of LED lifetime metrics and related lighting product groups40C.6Example lifetime metric values41Annex D (normative)Explanation of the photometric code43Annex E (normative)Measurement of displacement factor44E.1General44E.2Phase shift angle definition44E.3Measurements requirements45E.3.1Measurement circuit and supply source45E.3.2Requirements for measurement equipment45E.3.3Test conditions46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die4848G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50				
C.2Life time specification for gradual light output degradation37C.3Lifetime specification for abrupt light output degradation38C.4Combined gradual and abrupt light output degradation39C.5Overview of LED lifetime metrics and related lighting product groups40C.6Example lifetime metric values41Annex D (normative)Explanation of the photometric code43Annex E (normative)Measurement of displacement factor44E.1General44E.2Phase shift angle definition44E.3.1Measurements requirements45E.3.2Requirements for measurement equipment45E.3.3Test conditions45Annex F (informative)Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50				
C.3Lifetime specification for abrupt light output degradation38C.4Combined gradual and abrupt light output degradation39C.5Overview of LED lifetime metrics and related lighting product groups40C.6Example lifetime metric values41Annex D (normative)Explanation of the photometric code43Annex E (normative)Measurement of displacement factor44E.1General44E.2Phase shift angle definition44E.3Measurements requirements45E.3.1Measurement circuit and supply source45E.3.2Requirements for measurement equipment45E.3.3Test conditions45Annex F (informative)Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50				
C.4Combined gradual and abrupt light output degradation39C.5Overview of LED lifetime metrics and related lighting product groups40C.6Example lifetime metric values41Annex D (normative)Explanation of the photometric code43Annex E (normative)Measurement of displacement factor44E.1General44E.2Phase shift angle definition44E.3Measurements requirements45E.3.1Measurement circuit and supply source45E.3.2Requirements for measurement equipment45E.3.3Test conditions45Annex F (informative)Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50				
C.5Overview of LED lifetime metrics and related lighting product groups40C.6Example lifetime metric values41Annex D (normative) Explanation of the photometric code43Annex E (normative) Measurement of displacement factor44E.1General44E.2Phase shift angle definition44E.3Measurements requirements45E.3.1Measurement circuit and supply source45E.3.2Requirements for measurement equipment45E.3.3Test conditions45Annex F (informative) Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative) Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative) Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50				
C.6Example lifetime metric values41Annex D (normative)Explanation of the photometric code43Annex E (normative)Measurement of displacement factor44E.1General44E.2Phase shift angle definition44E.3Measurements requirements45E.3.1Measurement circuit and supply source45E.3.2Requirements for measurement equipment45E.3.3Test conditions45Annex F (informative)Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50				
Annex D (normative) Explanation of the photometric code43Annex E (normative) Measurement of displacement factor44E.1 General44E.2 Phase shift angle definition44E.3 Measurements requirements45E.3.1 Measurement circuit and supply source45E.3.2 Requirements for measurement equipment45E.3.3 Test conditions45Annex F (informative) Explanation of displacement factor46F.1 General46F.2 Recommended values for displacement factor46Annex G (informative) Examples of LED dies and LED packages48G.1 LED die48G.2 LED package49Annex H (informative) Test equipment for temperature measurement50H.1 General50H.2 Set-up and procedure50				
Annex E (normative) Measurement of displacement factor 44 E.1 General 44 E.2 Phase shift angle definition 44 E.3 Measurements requirements. 45 E.3.1 Measurement circuit and supply source 45 E.3.2 Requirements for measurement equipment 45 E.3.3 Test conditions 45 Annex F (informative) Explanation of displacement factor 46 F.1 General 46 F.2 Recommended values for displacement factor 46 Annex G (informative) Examples of LED dies and LED packages 48 G.1 LED die 48 G.2 LED package 49 Annex H (informative) Test equipment for temperature measurement 50 H.1 General 50 H.2 Set-up and procedure 50				
E.1General44E.2Phase shift angle definition44E.3Measurements requirements45E.3.1Measurement circuit and supply source45E.3.2Requirements for measurement equipment45E.3.3Test conditions45Annex F (informative)Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50				
E.2Phase shift angle definition44E.3Measurements requirements45E.3.1Measurement circuit and supply source45E.3.2Requirements for measurement equipment45E.3.3Test conditions45Annex F (informative)Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50			(normative) Measurement of displacement factor	. 44
E.3Measurements requirements.45E.3.1Measurement circuit and supply source.45E.3.2Requirements for measurement equipment45E.3.3Test conditions.45Annex F (informative)Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50	E	5.1		
E.3.1Measurement circuit and supply source45E.3.2Requirements for measurement equipment45E.3.3Test conditions45Annex F (informative)Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50	_		-	
E.3.2Requirements for measurement equipment45E.3.3Test conditions45Annex F (informative)Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50	E			
E.3.3Test conditions45Annex F (informative) Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative) Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative) Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50		E.3.1	11.5	
Annex F (informative) Explanation of displacement factor46F.1General46F.2Recommended values for displacement factor46Annex G (informative) Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative) Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50				
F.1General46F.2Recommended values for displacement factor46Annex G (informative) Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative) Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50				
F.2Recommended values for displacement factor46Annex G (informative)Examples of LED dies and LED packages48G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50	Ann	ex F ((informative) Explanation of displacement factor	. 46
Annex G (informative) Examples of LED dies and LED packages 48 G.1 LED die 48 G.2 LED package 49 Annex H (informative) Test equipment for temperature measurement 50 H.1 General 50 H.2 Set-up and procedure 50	F	5.1	General	. 46
G.1LED die48G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50	F	.2	Recommended values for displacement factor	. 46
G.2LED package49Annex H (informative)Test equipment for temperature measurement50H.1General50H.2Set-up and procedure50	Ann	ex G	(informative) Examples of LED dies and LED packages	. 48
Annex H (informative)Test equipment for temperature measurement	C	G.1	LED die	. 48
H.1General50H.2Set-up and procedure50	C	G.2	LED package	. 49
H.2 Set-up and procedure50	Ann	ex H ((informative) Test equipment for temperature measurement	. 50
H.2 Set-up and procedure50	F	1.1	General	. 50
	F	1.2		
	Bibl	iograp		

Figure 1 – Types of LED modules	13
Figure 2 – Luminous flux depreciation over test time	28
Figure C.1 – Lumen output over life of a LED-based luminaire comprised of a single	
LED module	
Figure C.2 – Life time specification for gradual light output degradation	
Figure C.3 – Reliability curve <i>R</i> abrupt for abrupt light output degradation	
Figure C.4 – Reliability curve <i>R</i> gradual for gradual light output degradation	
Figure C.5 – Combined R _{gradual} and R _{abrupt} degradation	40
Figure C.6 – Overview of LED lifetime metrics	41
Figure E.1 – Definition of the fundamental current phase shift angle φ_1 (I_1 leads U_{mains} , $\varphi_1 > 0$)	44
Figure E.2 – Definition of the fundamental current phase shift angle φ_1 (I_1 lags U_{mains} , $\varphi_1 < 0$)	45
Figure G.1 – Schematic drawings of LED dies	48
Figure G.2 – Schematic drawings of LED packages	49
Table 1 – Mandatory marking and location of marking ¹	19
Table 2 – LED module life time information	20
Table 3 – Optional marking and location of marking	20
Table 4 – Allowed variations within a family	22
Table 5 – Tolerance (categories) on rated chromaticity coordinate values	26
Table 6 – Lumen maintenance code at an operational time as stated in 6.1	27
Table 7 – Sample sizes	31
Table C.1 – Example lifetime metric values for lumen maintenance factor ratings	41
numbers in %	41
Table C.2 – Example lifetime metric values for abrupt failure	42
numbers in %	42
Table C.3 – Example lifetime metric values of <i>x</i> for median LED lamp life (combined failures)	42
numbers in %	42
Table C.4 – Example lifetime metric values	42
Table F.1 – Recommended values for displacement factor	47

National Foreword

This Singapore Standard was prepared by a Working Group appointed by the Technical Committee on Building Facilities and Services under the direction of the Electrical and Electronic Standards Committee.

This standard is an identical adoption of International Standard IEC 62717:2014, 'LED modules for general lighting – Performance requirements' published by the International Electrotechnical Commission.

Attention is drawn to the following:

- 1. Where appropriate, the words 'International Standard' shall be read as 'Singapore Standard'.
- 2. The comma has been used throughout as a decimal marker whereas in Singapore Standards it is a practice to use a full point on the baseline as the decimal marker.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LED MODULES FOR GENERAL LIGHTING – PERFORMANCE REQUIREMENTS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62717 has been prepared by subcommittee 34A: Lamps, of IEC technical committee 34: Lamps and related equipment.

This first edition cancels and replaces IEC PAS 62717 published in 2011. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to IEC PAS 62717.

- all terms and definitions are aligned with IEC 62504 and relevant documents of CIE. For example, general terms like "rated value" are shifted to IEC 62504.
- a statement on the applicability on a population is included.
- the normative references are completed and cleaned from standards that are not in use.

- with regard to EMC, references to harmonic currents are given.
- the change, which has an effect on most parts of the standard, is the split of failure mechanisms into abrupt failures and luminous flux depreciation. Consequently, new terms and definitions, new requirements for lumen maintenance and a complete new structure and contents of Annex C are introduced.
- transition from t_{pmax} to t_{prated} is made, with the background that there is not one t_{pmax}, but a choice of t_p(rated) values, in combination with lifetime.
- places where to mark (product, packaging, data sheets) are changed, and as a consequence of the split of failure mechanisms, new parameters are listed. Further, changes in the endurance test (ramping speed of temperature) are reflected in marking.
- the concept of displacement factor instead of power factor is introduced. This led to new definitions, requirements and Annexes E and F.
- the requirements on luminous efficacy are changed.
- the requirements, associated with the family concept are reviewed.
- statistics, based on confidence intervals are removed. This concerns requirements and limits for LED module power and luminous flux and deletion of Annex E.
- new requirements for lumen maintenance are introduced.
- as part of the endurance test, the maximum light decrease after accelerated operation life test is now fixed.
- with regard to the discussion on type test and sample size, the number of pieces in a test sample is drastically reduced, see Table 7.
- Annex A on measuring methods is completely restructured and reviewed, for example for ambient temperature and for shortening of stabilisation time when conducting subsequent light output measurements.
- for electrical characteristics, the ageing time may be chosen as 500 h.
- for photometric data file formats, reference is given to IEC 62722-1.
- mistakes in the photometric code (Annex D) are corrected.
- Annex G on optimised test duration is removed; instead, an INF sheet shall be published.
- from the luminaire standard, a new Annex H on "Test equipment for temperature measurement" is taken over.
- finally, the Bibliography is updated.

The text of this standard is based on the following documents:

FDIS	Report on voting	
34A/1796/FDIS	34A/1817/RVD	

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this standard, the following print types are used:

- requirements: roman type.

- test specifications: italic type.
- notes: smaller roman type.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

The first edition of a performance standard (precursor: IEC PAS 62717) for LED modules for general lighting applications acknowledges the need for relevant tests for this new source of electrical light, sometimes called "solid state lighting". The publication is closely related to simultaneously developed performance standard publication (which also started with a Publicly Available Specification) for luminaires in general (IEC 62722-1) and for LED-luminaires (IEC 62722-2-1). Changes in the LED module standard will have an impact on the luminaire standards and vice versa, due to the behaviour of LED. Therefore, in the development of the present standard, a close collaboration between experts of both products has taken place.

The provisions in the standard represent the technical knowledge of experts from the fields of the semiconductor (LED chip) industry and of those of the traditional electrical light sources.

Three types of LED-modules are covered: with integral controlgear, with means of control on board, but with separate controlgear ("semi-ballasted"), and with complete separate controlgear.

LED MODULES FOR GENERAL LIGHTING – PERFORMANCE REQUIREMENTS

1 Scope

1.1 General

This International Standard specifies the performance requirements for LED modules, together with the test methods and conditions, required to show compliance with this standard. The following types of LED modules are distinguished and schematically shown in Figure 1:

Type 1: integrated LED modules for use on d.c. supplies up to 250 V or on a.c. supplies up to 1 000 V at 50 Hz or 60 Hz.

Type 2: LED modules operating with part of separate controlgear connected to the mains voltage, and having further control means inside ("semi-integrated") for operation under constant voltage, constant current or constant power.

Type 3: LED modules where the complete controlgear is separate from the module (non-integrated) for operation under constant voltage, constant current or constant power.

IEC

The power supply of the controlgear for semi-ballasted LED modules (Type 2) is an electronic device capable of controlling currents, voltage or power within design limits.

The control unit of the controlgear for semi-ballasted LED modules (Type 2) is an electronic device to control the electrical energy to the LEDs.

A LED module with separate controlgear can be either a non-ballasted LED module or a semi-ballasted LED module.

Figure 1 – Types of LED modules

The requirements of this standard relate only to type testing.

Recommendations for whole product testing or batch testing are under consideration.

This standard covers LED modules, based on inorganic LED technology that produces white light.

Life time of LED modules is in most cases much longer than the practical test times. Consequently, verification of manufacturer's life time claims cannot be made in a sufficiently confident way, because projecting test data further in time is not standardised. For that reason the acceptance or rejection of a manufacturers life time claim, past an operational time as stated in 6.1, is out of the scope of this standard.

Instead of life time validation this standard has opted for lumen maintenance codes at a defined finite test time. Therefore, the code number does not imply a prediction of achievable life time. The categories, represented by the code, are lumen-depreciation character categories showing behaviour in agreement with manufacturer's information which is provided before the test is started.

In order to validate a life time claim, an extrapolation of test data is needed. A general method of projecting measurement data beyond limited test time is under consideration.

The pass/fail criterion of the life time test as defined in this standard is different from the life time metrics claimed by manufacturers. For explanation of recommended life time metrics, see Annex C.

NOTE When modules are operated in a luminaire, the claimed performance data can deviate from the values established via this standard due to e.g. luminaire components that impact the performance of the LED module.

The separate electronic controlgear for LED modules as mentioned in Type 2 and Type 3 is not part of the testing against the requirements of this standard.

Protection for water and dust ingress, see B.3.

1.2 Statement

It may be expected that integrated LED modules which comply with this standard will start and operate satisfactorily at voltages between 92 % and 106 % of rated supply voltage. LED modules with separate controlgear are expected to start and operate satisfactorily in combination with the specified controlgear complying with IEC 61347-2-13 and IEC 62384. All LED modules are expected to start and operate satisfactorily when operated under the conditions specified by the LED module manufacturer and in a luminaire complying with IEC 60598-1.

The requirements for individuals apply for 95 % of the population.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-845:1987, International Electrotechnical Vocabulary – Chapter 845: Lighting

IEC 60068-2-14, Environmental testing – Part 2-14: Tests – Test N: Change of temperature

IEC 60068-3-5:2001, Environmental testing – Part 3-5: Supporting documentation and guidance – Confirmation of the performance of temperature chambers

IEC 60081, Double-capped fluorescent lamps – Performance specifications

IEC 61000-3-2:2005¹, Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions (equipment input current ≤ 16 A per phase) IEC 61000-3-2:2005/AMD 1:2008 IEC 61000-3-2:2005/AMD 2:2009

IEC 61000-4-7, Electromagnetic compatibility (EMC) – Part 4-7: Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto

IEC TR 61341, Method of measurement of centre beam intensity and beam angle(s) of reflector lamps

IEC 61347-2-13, Lamp controlgear – Part 2-13: Particular requirements for d.c. or a.c. supplied electronic controlgear for LED modules

IEC 62031:2008, LED modules for general lighting – Safety specifications

IEC 62504, General lighting – Light emitting diode (LED) products and related equipment – Terms and definitions

CIE 13.3:1995, Method of measuring and specifying colour rendering properties of light sources

CIE 121:1996, The photometry and goniophotometry of luminaires

CIE 177:2007, Colour rendering of white LED light sources