

TECHNICAL REFERENCE

Rotating electrical machines -

Part 31 : Selection of energy-efficient motors including variable speed applications – Application guide

Published by

IEC/TS 60034-31:2010, IDT (ICS 29.160)

TECHNICAL REFERENCE

Rotating electrical machines – Part 31 : Selection of energy-efficient motors including variable speed applications – Application guide

All rights reserved. Unless otherwise specified, no part of this Technical Reference may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© IEC 2010 – All rights reserved © Enterprise Singapore 2017

ISBN 978-981-47-8443-6

This Technical Reference was endorsed by the Energy Standards Committee on behalf of the Singapore Standards Council on 12 October 2017.

First published, 2018

The Energy Standards Committee, appointed by the Standards Council, consists of the following members:

	Name	Capacity
Chairman :	Mr Ho Hiang Kwee	Individual Capacity
1 st Dy Chairman	Mr Ram Bhaskar	National Environment Agency
2 nd Dy Chairman	Mr Wong Kum Hoong	Energy Market Authority
Secretary 1	Mr Jason Low	SPRING Singapore
Secretary 2	Ms Barbara Bok	SPRING Singapore
Members :	Assoc Prof Chai Kah Hin	National University of Singapore
	Mr Adrian Cheong Wah Onn	Land Transport Authority
	Capt Charles Alexandra De Souza	Maritime and Port Authority of Singapore
	Mr Huang Xuebo	Agency for Science, Technology and Research
	Ms Kavita Gandhi	Sustainable Energy Association of Singapore
	Ms Kriti Gupta	SP PowerGrid Ltd
	Mr Richard Kwok	Singapore Business Federation
	Mr Nilesh Jadhav	Nanyang Technological University
	Mr Tan Chek Sim	Housing & Development Board
	Mr Tan Pua Yong	Singapore Manufacturing Federation
	Er. Teo Kong Poon	The Institution of Engineers, Singapore
	Mr Toh Eng Shyan	Building and Construction Authority
	Prof Tseng King Jet	Singapore Green Building Council
	Mr Wong Toon Suan	Gas Association of Singapore
	Prof Wong Yew Wah	ASHRAE Singapore Chapter
	Er. Yeow Mei Leng	Association of Consulting Engineers Singapore
Co-opted Members	Mr Norman Lee	Individual Capacity
	Prof Toh Kok Chuan	Individual Capacity

The Working Group, appointed by the Energy Standards Committee to assist in the preparation of this standard, comprises the following experts who contributed in their *individual capacity*:

		Name
Convenor	:	Mr Roland Tan
Members	:	Assoc Prof Ang Hock Eng
		Mr Clarence Chiang
		Mr Chng Tuan Meng
		Er. Eddie Chong Chun Sen
		Mr Choong Chow Neng
		Mr Carsten Ederer
		Ms Lydia Goh
		Mr Norman Lee
		Ms Tracy Liu
		Mr Colin Ong
		Er. Ong Eng Tong
		Mr Kelvin Ong
		Mr Jerry Ooi
		Mr S Suresh Kumar
		Mr Toh Eng Shyan
		Dr Tseng King Jet
		Mr Xu Xiao Ming

The organisations in which the experts are involved are:

ABB Pte Ltd Association of Consulting Engineers Singapore Building and Construction Authority Chevron Philips Chemicals Asia Pte Ltd ebm-papst SEA Pte. Ltd. EV Solutions Pte Ltd G-Energy Global Pte Ltd MSD International GmbH (Singapore Branch) National Environment Agency Nanyang Technological University Schneider Electric Singapore Pte Ltd Singapore Green Building Council Singapore Manufacturing Federation Sustainable Energy Association of Singapore Teco Electric & Machinery (Pte) Ltd The Institution of Engineers, Singapore

(blank page)

CONTENTS

NAT	IONA	L FOREWORD	8
FOR	REWC	PRD	9
INTF	RODL	JCTION	. 11
1	Scop	e	. 12
2	Norm	ative references	. 12
3	Term	s definitions and symbols	12
•	3 1	Terms and definitions	12
•	ວ. i ເ	Symbols	12
4	J.Z Gene	ral	13
5	Effici		14
0	E 1	Canaral	. 14
:	ວ. I 5- ງ	General	. 14
	5.2 5.2	Additional mater lasses when operated on a frequency converter	16
	5.5 5.4	Motors for higher officioney classes	16
	55	Variations in motor losses	. 10
	5.6	Part load efficiency	18
	5.0	Efficiency testing methods	20
	5.8	Power factor (see Figure 4)	. 20
	5.0 5.9	Matching motors and variable frequency converters	22
	5 10	Motors rated for 50 Hz and 60 Hz	23
	5 11	Motors rated for different voltages or a voltage range	25
	5 12	Motors rated for operation at frequencies other than 50/60 Hz	25
	5 13	Variable frequency converter efficiency	25
	5.14	Frequency converter power factor	. 27
6	Envir	onment	. 28
-	6 1	Starting performance	28
	6.2	Operating speed and slip	28
	6.3	Effects of power quality and variation in voltage and frequency	28
	6.4	Effects of voltage unbalance	29
	6.5	Effects of ambient temperature	29
7	a.a Appli	cations	. 29
	7 1	General	29
	72	Energy savings by speed control (variable speed drives VSD)	. 20
	7.3	Correct sizing of the motor	30
	74	Continuous duty application	30
	7.5	Applications involving extended periods of light load operations	. 31
	7.6	Applications involving overhauling loads	. 32
	7.7	Applications where load-torque is increasing with speed (pumps, fans, compressors, etc.)	32
	7.8	Applications involving frequent starts and stops and/or mechanical braking	.33
	7.9	Applications involving explosive gas or dust atmospheres	. 33
8	Econ		. 33
-	<u> </u>	Relevance to users	22
	8.2	Initial nurchase cost	. 34
	U.2	5	. 07

	0 0		25
	0.3	Deviading cost	35
	0.4	Rewinding cost	30
	0.0 9.6	Payback lime	37 27
۵	0.0 Maint		37 38
			50
Ann	ex A	(Informative) Super-premium efficiency (IE4)	40
Bipi	iogra	phy	47
Figu syst	ure 1 ems.	 Overview of different areas for savings of electrical energy with drive 	13
Figu mec	ure 2 chanic	 Typical losses of energy-efficient motors, converters and electro- al brakes 	14
Figu mot	ure 3 · ors of	 Typical efficiency versus load curve bands for three-phase, cage-induction different output power ranges (approximately 1,1 kW, 15 kW and 150 kW) 	19
Figu	ure 4	– Typical power factor versus load curve bands for three-phase,cage-	
indu 150	iction kW).	motors of different output power ranges (approximately 1,1 kW, 15 kW and	21
Figu mote 20 %	ure 5 ors be % incr	 Typical reduction of energy efficiency in %-points for 4-pole, low-voltage tween 50 Hz and 60 Hz when compared at the same torque (60 Hz power eased) 	24
Figu mote torq	ure 6 ors be ue 20	 Typical reduction of energy efficiency in %-points for 4-pole, low-voltage etween 50 Hz and 60 Hz when compared at the same output power (60 Hz % reduced) 	25
Figu with	ure 7⊸ apa	 Typical efficiency of indirect three-phase voltage source type converters ssive front-end for typical load points of pumps, fans and compressors 	26
Figu with	ure 8⊣ ⊨a pa	 Typical efficiency of indirect three-phase voltage source type converters ssive front-end for typical load points of constant torque 	26
Figu volta	ure 9 - age fo	 Typical variations of current, speed, power factor and efficiency with or constant output power 	29
Figu runr	ure 10 ning a	 Potential energy savings by improvement of efficiency classes for motors t rated load 	31
Figu indu	ure 11 Iction	 Typical torque versus speed curves for 11 kW, 4-pole, three-phase, cage- motors and load versus speed curves for speed-square-loads 	32
Figu yeai	ure 12 rs life	e – 11 kW IE3 motor operated at full load, 4 000 operating hours per year, 15 cycle	34
Figu	ure 13	– Example of a load factor graph: fraction of annual operating hours	35
Figu	ire 14	– Life cycle cost analysis of an 11 kW motor operating at full load	38
Figu	ire A.	1 – IE4 efficiency limits	46
Tab	le 1 –	Loss distribution in three-phase, 4-pole, cage-induction electric motors	16
Tab 60 ⊦	le 2 – Iz wit	Exemplary efficiency calculation of a motor when operated at 50 Hz and h the same torque, using a 50 Hz motor rating as the basis	23
Tab	le 3 –	Loss distribution for low-voltage U-converters	27
Tab effic	le 4 - ciency	Example of changing of efficiency, speed and torque demand with energy class of three 11 kW, 50 Hz motors in the same application	32
Tab	le 5 –	Average lifecycles for electric motors	36

Table A.1 – Interpolation coefficients	41
Table A.2 – Nominal limits (%) for super-premium efficiency (IE4)	42
Table A.3 – Standard power in kW associated with torque and speed for line-operated motors	43
Table A.4 – Nominal limits for super-premium efficiency (IE4) for 50 Hz line operated motors	44
Table A.5 – Nominal limits for super-premium efficiency (IE4) for 60 Hz line operated motors	45

National Foreword

This Technical Reference (TR) was prepared by a Working Group under the direction of the Energy Standards Committee.

This TR is identical with IEC/TS 60034-31:2010 published by the International Electrotechnical Commission.

Attention is drawn to the following:

- 1. The reference to "IEC 60034-1" shall be replaced by "SS IEC 60034-1".
- 2. The comma has been used throughout as a decimal marker whereas in Singapore Standards it is a practice to use a full point on the baseline as the decimal maker.

This TR is a provisional standard made available for application over a period of three years. The aim is to use the experience gained to update the TR so that it can be adopted as a Singapore Standard. Users of the TR are invited to provide feedback on its technical content, clarity and ease of use. Feedback can be submitted using the form provided in the TR. At the end of the three years, the TR will be reviewed, taking into account any feedback or other considerations, to further its development into a Singapore Standard if found suitable.

Attention is drawn to the possibility that some of the elements of this Technical Reference may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ROTATING ELECTRICAL MACHINES –

Part 31: Selection of energy-efficient motors including variable speed applications – Application guide

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC 60034-31, which is a technical specification, has been prepared by IEC technical committee 2: Rotating machinery.

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
2/1575/DTS	2/1594/RVC

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 60034 series, published under the general title *Rotating electrical machines,* can be found on the IEC website.

NOTE A table of cross-references of all IEC TC 2 publications can be found in the IEC TC 2 dashboard on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International standard,
- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

The present technical specification gives technical guidelines for the application of energyefficient motors in constant-speed and variable speed applications. It does not cover aspects of a purely commercial nature.

Standards developed by IEC technical committee 2 do not deal with methods of how to obtain a high efficiency but with tests to verify the guaranteed value. IEC 60034-2-1 is the most important standard for this purpose.

For approximately 15 years regional agreements were negotiated in many areas of the world regarding efficiency classes of three-phase, cage-induction motors with outputs up to about 200 kW maximum, as motors of this size are installed in high quantities and are for the most part produced in series production. The design of these motors is often driven by the market demand for low investment cost, hence energy efficiency was not a top priority.

In IEC 60034-30, IE efficiency classes for single-speed cage-induction motors have been defined and test procedures specified:

IE1	Standard efficiency
IE2	High efficiency
IE3	Premium efficiency
IE4	Super-premium efficiency

Determination of efficiency for motors powered by a frequency converter will be included in IEC standard 60034-2-3.

However, for motors rated 1 MW and above, which are usually custom made, a high efficiency has always been one of the most important design goals. The full-load efficiency of these machines typically ranges between 95 % and 98 %. Efficiency is usually part of the purchase contract and is penalized if the guaranteed values are not met. Therefore, these higher ratings are of secondary importance when assigning efficiency classes.

With permission from the National Electrical Manufacturers Association (NEMA), some parts of this TS are based on NEMA MG 10, *Energy Management Guide For Selection and Use of Fixed Frequency Medium AC Squirrel-Cage Polyphase Induction Motors*.

ROTATING ELECTRICAL MACHINES –

Part 31: Selection of energy-efficient motors including variable speed applications – Application guide

1 Scope

This part of IEC 60034 provides a guideline of technical aspects for the application of energyefficient, three-phase, electric motors. It not only applies to motor manufacturers, OEMs (original equipment manufacturers), end users, regulators and legislators but to all other interested parties.

This technical specification is applicable to all electrical machines covered by IEC 60034-30. Most of the information however is also relevant for cage-induction machines with output powers exceeding 375 kW.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60034-1, Rotating electrical machines – Part 1: Rating and performance

IEC 60034-30, Rotating electrical machines – Part 30: Efficiency classes of single-speed three-phase, cage induction motors (IE-code)