

TR ISO/TR 14073 : 2017 ISO/TR 14073:2017, IDT (ICS 13.020.10; 13.020.60)

TECHNICAL REFERENCE

Environmental management – Water footprint – Illustrative examples on how to apply ISO 14046

Published by

TR ISO/TR 14073 : 2017 ISO/TR 14073:2017 (ICS 13.020.10; 13.020.60)

TECHNICAL REFERENCE

Environmental management – Water footprint – Illustrative examples on how to apply ISO 14046

All rights reserved. Unless otherwise specified, no part of this Technical Reference may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© ISO 2017 – All rights reserved © Enterprise Singapore 2017

ISBN 978-981-47-8463-4

This Technical Reference was approved by the Environment and Resources Standards Committee on behalf of the Singapore Standards Council on 8 November 2017.

First published, 2018

The Environment and Resources Standards Committee, appointed by the Standards Council, consists of the following members:

		Name	Capacity
Chairman	:	Prof Reginald Tan	Individual Capacity
Deputy Chairmen	:	Mr Dalson Chung Mr Norman Lee	National Environment Agency Individual Capacity
Secretary	:	Ms Lee Mong Ni	SPRING Singapore
Members	:	Mr Benedict Chia Dr Chiu Kuang Ping Mr Alex Chong Mr Michael Ho Mr Jadhav Nilesh Ms Kavita Gandhi	National Climate Change Secretariat Singapore Water Association Agency for Science, Technology & Research Waste Management & Recycling Association of Singapore Nanyang Technological University Sustainable Energy Association of Singapore
		Mr Khor Seng Teng Mr Kelvin Liew Dr Lim Mong Hoo Mr Lim Yew Tee Collin Dr Pang Chee Meng Mr Steve Seah Ms Yvonne Soh Dr Song Bin Mr Tan Sze Tiong Ms Jen Teo Pui Heng Mr Toh Chee Ming Mr Toh Eng Shyan Er. Alfred Wong	Hyflux Ltd SembWaste Pte Ltd Individual Capacity Singapore Manufacturing Federation PUB, Singapore's National Water Agency SP Group Singapore Green Building Council Singapore Institute of Manufacturing Technology Housing & Development Board Singapore Environment Council Singapore Chemical Industry Council Building and Construction Authority The Institution of Engineers, Singapore
		Mr Yap Ong Heng Mr Yeo Lai Hin Er. Yeow Mei Leng	Ministry of Transport Energy Market Authority Association of Consulting Engineers, Singapore

The Technical Committee on Environmental Management, appointed by the Environment and Resources Standards Committee and responsible for the preparation of this standard, consists of representatives from the following organisations:

		Name	Capacity
Chairman	:	Dr Song Bin	Individual Capacity
Secretary	:	Ms Aruna Charukesi Palaninathan	SPRING Singapore
Members	:	Mr Heng Hoon Jee	Individual Capacity
		Dr Khoo Hsien Hui	Institute of Chemical and Engineering Sciences
		Mr Eddy Lau	Singapore Green Building Council
		Ms Amanda Lin	Singapore Manufacturing Federation
		Mr Suresh K	National Environment Agency
		Prof Reginald Tan	National University of Singapore
		Mr Toh Eng Shyan	Building and Construction Authority
		Dr Zhou Yi	The Institution of Engineers, Singapore

The Working Group on Greenhouse Gas Management and Product Lifecycle Assessment, appointed by the Technical Committee, to assist in the preparation of this standard, comprises the following experts who contribute in their *individual capacity*:

		Name
Convenor	:	Dr Song Bin
Secretary	:	Ms Aruna Charukesi Palaninathan
Members	:	Mr Krishna Sadashiv
		Ms Diane Peng
		Mr Praveen Tekchandani
		Mr Rahul Kar
		Mr Tan Boon Chong
		Mr Jansen Toh
		Mr Louis Wong

The organisations in which the experts of the Working Group are involved are:

E2C Consulting Pte Ltd Ernst & Young LLP National Climate Change Secretariat National Environment Agency Ramboll Environ Singapore Institute of Manufacturing Technology TUV SUD PSB Pte Ltd

(blank page)

4 copyright

Contents

Nation	al Foreword	9
Foreword		
Introduction 11		
1	Scope 1	12
2	Normative references 1	12
3	Terms and definitions 1	12
4	Symbols and abbreviated terms 1	12
4.1	Symbols 1	12
4.2	Abbreviated terms 1	13
5	Selection of the type of water footprint assessment 1	14
5.1	General 1	14
5.2	Choice of the type of water footprint study 1	17
6	Presentation of the examples 1	19
6.1	Example A – Water footprint inventory of two power plants 1	19
6.1.1	Goal and Scope 1	19
6.1.2	Inventory 1	19
6.1.3	Interpretation 2	20
6.2	Example B – Water footprint inventory of rice cultivation 2	20
6.2.1	Goal and Scope 2	20
6.2.2	Inventory 2	21
6.3	Example C – Water scarcity footprint of municipal water management 2	24
6.3.1	Goal and Scope 2	24
6.3.2	Inventory 2	25
6.3.3	Impact assessment 2	25
6.3.4	Interpretation 2	26
6.4	Example D – Water scarcity footprint of rice cultivation (cradle-to-gate) 2	26
6.4.1	Goal and Scope 2	26
6.4.2	Inventory 2	26
6.4.3	Impact assessment 2	27
6.5	Example E – Water scarcity footprint of a textile with life cycle stages in different locations 2	28
6.5.1		28

6.5.2	Inventory 2
6.5.3	Impact assessment 2
6.5.4	Interpretation 2
6.6	Example F – Water scarcity footprint of reservoir operation, reflecting seasonality 3
6.6.1	Goal and Scope 3
6.6.2	Inventory 3
6.6.3	Impact assessment 3
6.6.4	Interpretation 3
6.7	Example G – Water scarcity footprint and water availability footprint of packaging production 3
6.7.1	Goal and Scope 3
6.7.2	Inventory 3
6.7.3	Impact assessment 3
6.8	Example H – Water scarcity footprint differentiated by source of water 3
6.8.1	Goal and Scope 3
6.8.2	Inventory 3
6.8.3	Impact assessment 3
6.8.4	Interpretation 3
6.9	Example I – Variation of water scarcity by forest management and land use 3
6.9.1	Goal and Scope 3
6.9.2	Inventory 3
6.9.3	Impact assessment 3
6.9.4	Interpretation 3
6.10	Example J – Water eutrophication footprint of maize cultivation, calculated as one or two indicator results 3
6.10.1	Goal and Scope 3
6.10.2	Inventory 3
6.10.3	Impact assessment 3
6.11	Example K – Comprehensive water footprint profile of packaging production 4
6.11.1	Goal and Scope 4
6.11.2	Inventory 4
6.11.3	Impact assessment 4
6.11.4	Interpretation 4

6.12	Example L – Non-comprehensive weighted water footprint of cereal cultivation 45
6.12.1	Goal and Scope 45
6.12.2	Inventory 45
6.12.3	Impact assessment 45
6.13	Example M – Water footprint of packaging production as part of a life cycle assessment 47
6.13.1	Goal and Scope 47
6.13.2	Inventory 47
6.13.3	Impact assessment 47
6.13.4	Interpretation 48
6.14	Example N – Non-comprehensive water footprint of textile production 48
6.14.1	Goal and Scope 48
6.14.2	Inventory 49
6.14.3	Impact assessment 50
6.14.4	Discussion 52
6.14.5	Limitations 53
6.15	Example O – Non-comprehensive weighted water footprint of municipal water management 53
6.15.1	Goal and Scope 53
6.15.2	Inventory 54
6.15.3	Impact assessment 55
6.15.4	Interpretation 57
6.16	Example P – Non-comprehensive water footprint of a company producing chemical (organization) 59
6.16.1	Goal and Scope 59
6.16.2	Inventory 60
6.16.3	Impact assessment 60
6.16.4	Interpretation 64
6.17	Example Q – Water scarcity footprint of an aluminum company (organization) 64
6.17.1	Goal and Scope 64
6.17.2	Inventory 65
6.17.3	Impact assessment 66
6.17.4	Interpretation 70

6.18	Example R – Non-comprehensive direct water footprint of a hotel (organization) considering seasonality	71
6.18.1	Goal and Scope	71
6.18.2	Inventory	71
6.18.3	Impact assessment	71
6.18.4	Interpretation	73
7	Issues arising in water footprint studies	73
7.1	Seasonality	73
7.2	Use of a baseline	74
7.3	Evaporation, transpiration and evapotranspiration	75
7.4	Water quality	75
7.4.1	General	75
7.4.2	Relevant air and soil (and water) emissions	76
7.5	Choice of indicators along the environmental mechanism	77
7.6	Identification of foreseen consequences of the excluded impacts	79
7.7	Sensitivity analysis	79
Bibliog	graphy	80

National Foreword

This Technical Reference (TR) was prepared by the Working Group on Greenhouse Gas Management and Product Lifecycle Assessment appointed by the Technical Committee on Environmental Management under the direction of the Environment & Resources Standards Committee.

This TR is identical with ISO/TR 14073: 2017 published by the International Organization for Standardization.

This TR is a provisional standard made available for application over a period of three years. The aim is to use the experience gained to update the TR so that it can be adopted as a Singapore Standard. Users of the TR are invited to provide feedback on its technical content, clarity and ease of use. Feedback can be submitted using the form provided in the TR. At the end of the three years, the TR will be reviewed, taking into account any feedback or other considerations, to further its development into a Singapore Standard if found suitable.

The reference to International Standards shall be replaced by the following Singapore Standards:

International Standard	Corresponding Singapore Standard
ISO 14040	SS ISO 14040
ISO 14046	SS ISO 14046
ISO/TS 14072	TR ISO/TS 14072

The comma has been used throughout as a decimal marker whereas in Singapore Standards it is a practice to use a full point on the baseline as the decimal maker.

Attention is drawn to the possibility that some of the elements of this Technical Reference may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: <u>www.iso.org/iso/foreword.html</u>.

This document was prepared by Technical Committee ISO/TC 207, *Environmental management*, Subcommittee SC 5, *Life cycle assessment*.

This second edition cancels and replaces the first edition (ISO/TR 14073:2016), of which this constitutes a minor revision incorporating minor editorial corrections and improved figures.

Introduction

Principles, requirements and guidelines for the quantification and reporting of a water footprint are given in ISO 14046. The water footprint assessment according to ISO 14046 can be conducted as a stand-alone assessment, where only impacts related to water are assessed, or as part of a life cycle assessment. In addition, a variety of modelling choices and approaches are possible depending on the goal and scope of the assessment. The water footprint can be reported as a single value or as a profile of impact category indicator results.

This document provides illustrative examples on the application of ISO 14046 to further enhance understanding of ISO 14046 and to facilitate its widespread application.

At the time of the publication of this document, water footprint assessment methods are developing rapidly. Practitioners are encouraged to be aware of the latest developments when undertaking water footprint studies.

These examples are for illustrative purposes only and some of the data used are fictitious. The data are not intended to be used outside of the context of this document.

The Bibliography might contain references to methods that are not fully compliant with ISO 14046:2014.

Environmental management — Water footprint — Illustrative examples on how to apply ISO 14046

1 Scope

This document provides illustrative examples of how to apply ISO 14046, in order to assess the water footprint of products, processes and organizations based on life cycle assessment.

The examples are presented to demonstrate particular aspects of the application of ISO 14046 and therefore do not present all of the details of an entire water footprint study report as required by ISO 14046.

NOTE The examples are presented as different ways of applying ISO 14046 and do not preclude alternative ways of calculating the water footprint, provided they are in accordance with ISO 14046.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14046:2014, Environmental management — Water footprint — Principles, requirements and guidelines