

SS ISO 11137-3 : 2018 ISO 11137-3 : 2017, IDT

(ICS 11.080.01)

SINGAPORE STANDARD

Sterilisation of health care products — Radiation

 Part 3 : Guidance on dosimetric aspects of development, validation and routine control

Published by

SS 11137-3 : 2018 ISO 11137-3 : 2017, IDT (ICS 11.080.01)

SINGAPORE STANDARD

Sterilisation of health care products — Radiation

 Part 3 : Guidance on dosimetric aspects of development, validation and routine control

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© ISO 2017 – All rights reserved © Enterprise Singapore 2018

ISBN 978-981-48-3547-3

This Singapore Standard was approved on 9 November 2018 by the Biomedical and Health Standards Committee under the purview of the Singapore Standards Council.

First published, 2019

The Biomedical and Health Standards Committee, appointed by the Standards Council, consists of the following members:

		Name	Capacity
Chairman	:	Dr Yong Chern Chet	Individual Capacity
Deputy Chairmen	:	Mr Vincent Cheung	Individual Capacity
		Ms Selina Seah	Changi General Hospital
		Ms Wong Woei Jiuang	Health Sciences Authority
Advisor	:	Ms Jacqueline Monteiro	Individual Capacity
Secretary	:	Mr Kevin Tan	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Mr Alec Chow Boon Kuan	Medtronic International Ltd
		Mr Chung Kwong Yuew	Temasek Polytechnic (BioMedical Engineering Faculty)
		Ms Heidi Goh	Singapore Manufacturing Federation (Medical Technology Industry Group)
		Prof James Goh	Biomedical Engineering Society (Singapore)
		Dr Lai Choon Sheen	Eu Yan Sang International Ltd
		Dr Christopher Lam	Health Sciences Authority
		Assoc Prof Leo Hwa Liang	National University of Singapore
		Dr Lin Jianhua	TüV SüD PSB Pte Ltd
		Dr Leonard Loh	Nanyang Polytechnic
		Assoc Prof Eddie Ng Yin Kwee	Nanyang Technological University
		Dr Ong Siew Hwa	Acumen Research Laboratories Pte Ltd
		Dr Padmanabhan Saravanan	Temasek Polytechnic (Centre of Innovation for Complementary Health Products)
		Mr Peh Ruey Feng	Advent Access Pte Ltd
		Ms Celine Tan	Enterprise Singapore
		Prof Tan Puay Hoon	Singapore Health Services Pte Ltd
		Ms Wang Dan	Biosensors International Group
		Dr Sidney Yee	Diagnostics Development (DxD) Hub
		Dr Zhou Zhihong	Singapore Bioimaging Consortium

The Technical Committee on Quality Management Systems, appointed by the Biomedical and Health Standards Committee, consists of representatives from the following organisations:

		Name	Capacity
Chairman	:	Ms Heidi Goh	Individual Capacity
Secretary			Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Ms Jasmine Chan	Veredus Laboratories Pte Ltd
		Mr Chin Kai Hwee	Biosensors International Group
		Ms Katherine Goh	Singapore Accreditation Council
		Dr Christopher Lam	Health Sciences Authority
		Mr Nishith Desai	Medtronic International Ltd
		Ms Grace Tan	Edward Lifesciences (Singapore) Pte Ltd

The National Mirror Working Group on ISO/TC 210, appointed by the Technical Committee to assist in the preparation of this standard, comprises the following experts who contribute in their individual capacity:

Name

Convenor : Dr Margam Chandrasekaran

Secretary : Mr Kevin Tan

Members : Ms Heidi Goh

Ms How Pei Sin Ms Audrey Lee Mr Liew Ee Bin Mr Narayanan Sethu

Mr Caleb Ng Mr Paul Tan

The organisations in which the experts of the National Mirror Working Group are involved are:

Access-2-Healthcare

BioPharmaSpec UK Ltd

Sanmina Corporation Singapore

Singapore Manufacturing Federation (Medical Technology Industry Group)

SysteMED Pte Ltd

TüV SüD PSB Pte Ltd

Wise Consultants and Services Pte Ltd

(blank page)

4

Cor	itents		Page			
Nati	onal Fo	eword	7			
Fore	eword		8			
Intr	oductio		9			
1	Scop		10			
2	Norn	Normative references				
3	Tern	Terms, definitions and symbols				
	3.1 3.2	General	10			
4	Meas	Measurement of dose				
•	4.1	General				
		4.1.1 Direct and indirect dose measurements				
		4.1.2 Dosimetry systems				
		4.1.3 Best estimate of dose				
	4.2	Dosimetry system selection and calibration				
		4.2.1 General				
		4.2.2 Selection of dosimetry systems				
	4.3	Dose measurement uncertainty				
	4.3	4.3.1 General concepts				
		4.3.2 The Guide to the expression of uncertainty in measurement (GUM				
		methodology				
		4.3.3 Radiation sterilization specific aspects of dose measurement	4.5			
_		uncertainty				
5		lishing the maximum acceptable dose				
6		lishing the sterilization dose				
7		lation qualification				
8	Oper	ntional qualification	21			
	8.1	General	21			
	8.2	Gamma irradiators	22			
	8.3	Electron beam irradiators	24			
	8.4	X-ray irradiators				
9	Perf	Performance qualification				
	9.1	9.1 General				
	9.2	Gamma irradiators				
		9.2.1 Loading pattern	30			
		9.2.2 Dosimetry				
		9.2.3 Analysis of dose manning data	32			

	9.3	Electro	on beam irradiators	33
		9.3.1	Loading pattern	33
		9.3.2	Dosimetry	
		9.3.3	Analysis of dose mapping data	35
	9.4	X-ray i	rradiators	35
		9.4.1		
		9.4.2	Dosimetry	37
		9.4.3	Analysis of dose mapping data	
10	Routir	ne moni	itoring and control	38
	10.1	Genera	al	38
	10.2	Freque	ency of dose measurements	39
Annex	A (info	rmative) Mathematical modelling	40
Annex) Tables of references for dosimetry-related testing during	
	IQ/OQ	/PQ		43
Annex			Tolerances associated with doses used in sterilization dose	
	setting	g/subst	antiation in ISO 11137-2 and ISO/TS 13004	46
Annex	-		e) Application of dose measurement uncertainty in setting proce	
	target	doses.		47
Riblio	granhy			53

National Foreword

This Singapore Standard was prepared by the National Mirror Working Group on ISO/TC 210 appointed by the Technical Committee on Quality Management Systems under the direction of the Biomedical and Health Standards Committee.

This standard is identical with ISO 11137-3:2017, "Sterilization of health care products – Radiation – Part 3: Guidance on dosimetric aspects of development, validation and routine control", published by the International Organization for Standardization.

Attention is drawn to the following:

1. The references to International Standards shall be replaced by the following Singapore Standards:

International Standard Corresponding Singapore Standard

 ISO 11137-1
 SS ISO 11137-1

 ISO 13485
 SS ISO 13485

 ISO 14971
 SS ISO 14971

 ISO/IEC 17025
 SS ISO/IEC 17025

2. The comma has been used throughout as a decimal marker whereas in Singapore Standards it is a practice to use a full point on the baseline as the decimal marker.

Attention is also drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.
- ${\it 3.} \quad {\it Compliance with a SS or TR does not exempt users from any legal obligations}$

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical committee ISO/TC 198, *Sterilization of health care products*.

This second edition cancels and replaces the first edition (ISO 11137-3:2006), which has been technically revised.

A list of all parts in the ISO 11137 series can be found on the ISO website.

Introduction

An integral part of radiation sterilization is the ability to measure dose. Dose is measured during all stages of development, validation and routine monitoring of the sterilization process. It has to be demonstrated that dose measurement is traceable to a national or an International Standard, that the uncertainty of measurement is known, and that the influence of temperature, humidity and other environmental considerations on dosimeter response is known and taken into account. Process parameters are established and applied based on dose measurements. This document provides guidance on the use of dose measurements (dosimetry) during all stages in the development, validation and routine control of the radiation sterilization process.

Requirements in regard to dosimetry are given in ISO 11137-1 and ISO 11137-2 and ISO/TS 13004. This document gives guidance to these requirements. The guidance given is not normative and is not provided as a checklist for auditors. The guidance provides explanations and methods that are regarded as being suitable means for complying with the requirements. Methods other than those given in the guidance may be used, if they are effective in achieving compliance with the requirements of ISO 11137-1, ISO 11137-2 and ISO/TS 13004.

Sterilization of health care products — Radiation — Part 3: Guidance on dosimetric aspects of development, validation and routine control

1' Scope

This document gives guidance on meeting the requirements in ISO 11137-1 and ISO 11137-2 and in ISO/TS 13004 relating to dosimetry and its use in development, validation and routine control of a radiation sterilization process.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11137-1, Sterilization of health care products — Radiation — Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices

ISO 11137-2, Sterilization of health care products — Radiation — Part 2: Establishing the sterilization dose

ISO/TS 13004, Sterilization of health care products — Radiation — Substantiation of a selected sterilization dose: Method VD_{max}^{SD}

ISO 13485, Medical devices — Quality management systems — Requirements for regulatory purposes