

SS IEC 60601-1 : 2018 IEC 60601-1:2005+A1:2012, IDT (ICS 11.040)

SINGAPORE STANDARD

Medical electrical equipment

Part 1: General requirements for basic safety and essential performance

Published by

IEC 60601-1:2005+A1:2012, IDT (ICS 11.040)

SINGAPORE STANDARD

Medical electrical equipment

- Part 1: General requirements for basic safety and essential performance

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© IEC 2005 – All rights reserved © Enterprise Singapore 2018

ISBN 978-981-48-3526-8

This Singapore Standard was approved on 19 October 2018 by the Biomedical and Health Standards Committee under the purview of the Singapore Standards Council.

First published, 2019

The Biomedical and Health Standards Committee, appointed by the Standards Council, consists of the following members:

		Name	Capacity
Chairman	:	Dr Yong Chern Chet	Individual Capacity
Deputy Chairmen	:	Mr Vincent Cheung Ms Selina Seah Ms Wong Woei Jiuang	Individual Capacity Changi General Hospital Health Sciences Authority
Advisor	:	Ms Jacqueline Monteiro	Individual Capacity
Secretary	:	Ms Iris Peng	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Mr Alec Chow Boon Kuan	Medtronic International Ltd
		Mr Chung Kwong Yuew	Temasek Polytechnic (BioMedical Engineering Faculty)
		Ms Heidi Goh	Singapore Manufacturing Federation (Medical Technology Industry Group)
		Prof James Goh	Biomedical Engineering Society (Singapore)
		Dr Lai Choon Sheen	Eu Yan Sang International Ltd
		Dr Christopher Lam	Health Sciences Authority
		Assoc Prof Leo Hwa Liang	National University of Singapore
		Dr Lin Jianhua	TüV SüD PSB Pte Ltd
		Dr Leonard Loh	Nanyang Polytechnic
		Assoc Prof Eddie Ng Yin Kwee	Nanyang Technological University
		Dr Ong Siew Hwa	Acumen Research Laboratories Pte Ltd
		Dr Padmanabhan Saravanan	Temasek Polytechnic (Centre of Innovation for Complementary Health Products)
		Mr Peh Ruey Feng	Advent Access Pte Ltd
		Ms Celine Tan	Enterprise Singapore
		Prof Tan Puay Hoon	Singapore Health Services Pte Ltd
		Ms Wang Dan	Biosensors International Group
		Dr Sidney Yee	Diagnostics Development (DxD) Hub
		Dr Zhou Zhihong	Singapore Bioimaging Consortium

The Technical Committee on Medical Devices, appointed by the Biomedical and Health Standards Committee, consists of representatives from the following organisations:

		Name	Capacity
Chairman	:	Prof James Goh	Individual Capacity
Secretary	:	Ms Iris Peng	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Ms Chua Chui Khim Dr Christopher Lam Assoc Prof Leo Hwa Liang Dr Lim Jing Ms Iris Tan	Becton Dickinson Medical (S) Pte Ltd Health Sciences Authority Biomedical Engineering Society (Singapore) Osteopore International Pte Ltd Advent Access Pte Ltd

The National Mirror Working Group on IEC SC62D MT20, appointed by the Technical Committee to assist in the preparation of this standard, comprises the following experts who contribute in their individual capacity:

Name

Convenor : Dr Christian Gert Blu	Bluechel
----------------------------------	----------

Secretary : Mr Kevin Tan

Members : Mr Peter Haywood Dr Ho Teck Tuak Mr Watson Ong Mr Peh Ruey Feng Prof Tong Yen Wah

The organisations in which the experts of the National Mirror Working Group are involved are:

Advent Access Pte Ltd: AWAK Technologies Pte Ltd Kidney Dialysis Foundation National University of Singapore Temasek Polytechnic The Institution of Engineers, Singapore

(blank page) 4 COPYRIGHT

CONTENTS

NA	ΓΙΟΝΑ	L FOREWORD	. 14
FO	REWC)RD	. 15
INT	RODL	JCTION	. 18
INT	RODL	JCTION TO THE AMENDMENT	. 20
1	Scop	e, object and related standards	. 21
	1.1	* Scope	. 21
	1.2	Object	. 21
	1.3	* Collateral standards	. 21
	1.4	* Particular standards	. 22
2	* No	rmative references	. 22
3	* Ter	minology and definitions	. 25
4	Gene	ral requirements	. 47
	4.1	* Conditions for application to ME EQUIPMENT or ME SYSTEMS	. 47
	4.2	* RISK MANAGEMENT PROCESS for ME EQUIPMENT OF ME SYSTEMS	. 47
	4.3	* ESSENTIAL PERFORMANCE	. 49
	4.4	* EXPECTED SERVICE LIFE	. 50
	4.5	* Alternative RISK CONTROL measures or test methods for ME EQUIPMENT or ME SYSTEMS	. 50
	4.6	* ME EQUIPMENT OF ME SYSTEM parts that contact the PATIENT	. 51
	4.7	* SINGLE FAULT CONDITION for ME EQUIPMENT	. 51
	4.8	* Components of ME EQUIPMENT	. 52
	4.9	* Use of COMPONENTS WITH HIGH-INTEGRITY CHARACTERISTICS in	
		ME EQUIPMENT	. 52
	4.10	* Power supply	. 53
	4.11	Power input	. 54
5	* Ge	neral requirements for testing ME EQUIPMENT	. 54
	5.1	* TYPE TESTS	. 54
	5.2	* Number of samples	. 55
	5.3	Ambient temperature, humidity, atmospheric pressure	. 55
	5.4	Other conditions	. 55
	5.5	Supply voltages, type of current, nature of supply, frequency	. 55
	5.6	Repairs and modifications	. 56
	5.7	* Humidity preconditioning treatment	. 56
	5.8	Sequence of tests	. 57
	5.9	* Determination of APPLIED PARTS and ACCESSIBLE PARTS	. 57
6	* Cla	ssification of ME EQUIPMENT and ME SYSTEMS	. 60
	6.1	General	. 60
	6.2	* Protection against electric shock	. 60
	6.3	* Protection against harmful ingress of water or particulate matter	. 60
	6.4	Method(s) of sterilization	. 60
	6.5	Suitability for use in an OXYGEN RICH ENVIRONMENT	. 60
	6.6	* Mode of operation	. 61
		5	

7	ME E	QUIPMENT identification, marking and documents	61
	7.1	General	61
	7.2	Marking on the outside of ME EQUIPMENT or ME EQUIPMENT parts (see also	
		Table C.1)	62
	7.3	Marking on the inside of ME EQUIPMENT or ME EQUIPMENT parts (see also	67
	74	Marking of controls and instruments (see also Table C.3)	68
	7.5	Safety signs	70
	7.6	Symbols	70
	77	Colours of the insulation of conductors	70
	7.8	* Indicator lights and controls	71
	7.9	ACCOMPANYING DOCUMENTS	72
8	* Pro	otection against electrical HAZARDS from ME EQUIPMENT	78
	8.1	Fundamental rule of protection against electric shock	78
	8.2	Requirements related to power sources	79
	8.3	Classification of APPLIED PARTS	80
	8.4	Limitation of voltage, current or energy	80
	8.5	Separation of parts	83
	8.6	* Protective earthing, functional earthing and potential equalization	
		of ME EQUIPMENT	92
	8.7	LEAKAGE CURRENTS and PATIENT AUXILIARY CURRENTS	95
	8.8	Insulation	112
	8.9	* CREEPAGE DISTANCES and AIR CLEARANCES	118
	8.10	Components and wiring	133
0	8.11 * Dra	MAINS PARTS, components and layout	. 134
9	PIC	Meetion against mechanical HAZARDS of ME EQUIPMENT and ME SYSTEMS	140
	9.1	MECHANICAL HAZARDS OF ME EQUIPMENT	140
	9.2	* MECHANICAL HAZARDS associated with moving parts	. 141
	9.3	* Instability warappo	. 147
	9.4	* Expelled parts HAZARDS	147
	9.5	Acoustic operav (including infra, and ultracound) and vibration	152
	9.0	* Prossure vessels and parts subject to proumatic and hydraulic pressure	153
	9.7 0.8	* MECHANICAL HAZARDS associated with support systems	157
10	* Pro	MECHANICAL HAZARDS associated with support systems	163
10	10.1		162
	10.1	A-Raulation	164
	10.2	Alpha, beta, gamma, neutron and other particle radiation	164
	10.5		165
	10.4	Other visible electromagnetic radiation	165
	10.0	Infrared radiation	165
	10.0	Ultraviolet radiation	165
11	Prote	ction against excessive temperatures and other HAZARDS	165
	11 1	* Excessive temperatures in ME FOUIPMENT	165
	11.1	* Fire prevention	170
	11.3	* Constructional requirements for fire ENCLOSURES of ME FOURPMENT	175

	11.4 * ME EQUIPMENT and ME SYSTEMS intended for use with flammable anaesthetics	178
	11.5 * ME EQUIPMENT and ME SYSTEMS intended for use in conjunction with flammable agents	178
	 11.6 Overflow, spillage, leakage, ingress of water or particulate matter, cleaning, disinfection, sterilization and compatibility with substances used with the ME FOURMENT 	178
	11.7 Biocompatibility of ME FOUIPMENT and ME SYSTEMS	180
	11.8 * Interruption of the power supply / SUPPLY MAINS to ME EQUIPMENT	180
12	* Accuracy of controls and instruments and protection against hazardous outputs	180
	12.1 Accuracy of controls and instruments	180
	12.2 Usability of ME FOUIPMENT	181
	12.3 ALARM SYSTEMS	181
	12.4 Protection against hazardous output	. 181
13	* HAZARDOUS SITUATIONS and fault conditions for ME EQUIPMENT	182
-	13.1 Specific HAZARDOUS SITUATIONS	182
	13.2 Single Fault Conditions	184
14	* PROGRAMMABLE ELECTRICAL MEDICAL SYSTEMS (PEMS)	. 189
•••	14.1 * General	189
	14.2 * Documentation	190
	14.3 * RISK MANAGEMENT DIAD	190
	14.4 * PEMS DEVELOPMENT LIFE-CYCLE	190
	14.5 * Problem resolution	190
	14.6 RISK MANAGEMENT PROCESS	191
	14.7 * Requirement specification	191
	14.8 * Architecture	. 191
	14.9 * Design and implementation	192
	14.10 * VERIFICATION	192
	14.11* PEMS VALIDATION	192
	14.12 * Modification	. 193
	14.13 * PEMS intended to be incorporated into an IT-NETWORK	. 193
15	Construction of ME EQUIPMENT	194
	15.1 * Arrangements of controls and indicators of ME EQUIPMENT	194
	15.2 * Serviceability	194
	15.3 Mechanical strength	194
	15.4 ME EQUIPMENT components and general assembly	198
	15.5 * MAINS SUPPLY TRANSFORMERS of ME EQUIPMENT and transformers providing separation in accordance with 8.5	204
16	* ME SYSTEMS	207
10	16.1 * General requirements for the ME SYSTEMS	207
	16.2 * Accompanying documents of an ME system	207
	16.3 * Dower supply	200
	16.4 ENCLOSURES	209
	16.5 * SEPARATION DEVICES	210
	16.6 * LEAKAGE CURRENTS	210
	16.7 * Protection against MECHANICAL HAZARDS	211

16.8 Interruption of the power supply to parts of an ME SYSTEM	
16.9 ME SYSTEM connections and wiring	212 214
Tr Electionagnetic compatibility of ME EQUIPMENT and ME STSTEMS	
Annex A (informative) General guidance and rationale	215
Annex B (informative) Sequence of testing	330
Annex C (informative) Guide to marking and labelling requirements for ME EQU and ME SYSTEMS	IPMENT 334
Annex D (informative) Symbols on marking (see Clause 7)	
Annex E (informative) Examples of the connection of the measuring device (M measurement of the PATIENT LEAKAGE CURRENT and PATIENT AUXILIARY CURRENT (see 8.7)	D) for T 346
Annex F (informative) Suitable measuring supply circuits	
Annex G (normative) Protection against HAZARDS of ignition of flammable anamixtures	esthetic 352
Annex H (informative) PEMS structure, PEMS DEVELOPMENT LIFE-CYCLE and documentation	
Annex I (informative) ME SYSTEMS aspects	
Annex J (informative) Survey of insulation paths	
Annex K (informative) Simplified PATIENT LEAKAGE CURRENT diagrams	
Annex L (normative) Insulated winding wires for use without interleaved insula	tion 387
Annex M (normative) Reduction of pollution degrees	390
Bibliography	391
Bibliography	391 395
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX	391 395 397
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors Figure 3 – Example of a CLASS I ME EQUIPMENT	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors Figure 3 – Example of a CLASS I ME EQUIPMENT Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors Figure 3 – Example of a CLASS I ME EQUIPMENT Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT Figure 5 – Schematic flow chart for component qualification (see 4.8)	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors Figure 3 – Example of a CLASS I ME EQUIPMENT Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT Figure 5 – Schematic flow chart for component qualification (see 4.8) Figure 6 – Standard test finger (see 5.9.2.1)	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors Figure 3 – Example of a CLASS I ME EQUIPMENT Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT Figure 5 – Schematic flow chart for component qualification (see 4.8) Figure 6 – Standard test finger (see 5.9.2.1) Figure 7 – Test hook (see 5.9.2.2)	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors Figure 3 – Example of a CLASS I ME EQUIPMENT Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT Figure 5 – Schematic flow chart for component qualification (see 4.8) Figure 6 – Standard test finger (see 5.9.2.1) Figure 7 – Test hook (see 5.9.2.2) Figure 8 – Test pin (see 8.4.2 d)	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors Figure 3 – Example of a CLASS I ME EQUIPMENT Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT Figure 5 – Schematic flow chart for component qualification (see 4.8) Figure 6 – Standard test finger (see 5.9.2.1) Figure 8 – Test pin (see 8.4.2 d) Figure 9 – Application of test voltage to bridged PATIENT CONNECTIONS for DEFIBRILLATION-PROOF APPLIED PARTS (see 8.5.5.1)	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors Figure 3 – Example of a CLASS I ME EQUIPMENT Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT Figure 5 – Schematic flow chart for component qualification (see 4.8) Figure 6 – Standard test finger (see 5.9.2.1) Figure 8 – Test pin (see 8.4.2 d) Figure 9 – Application of test voltage to bridged PATIENT CONNECTIONS for DEFIBRILLATION-PROOF APPLIED PARTS (see 8.5.5.1) Figure 10 – Application of test voltage to individual PATIENT CONNECTIONS for	
Bibliography INDEX OF ABBREVIATIONS AND ACRONYMS INDEX Figure 1 – Detachable mains connection Figure 2 – Example of the defined terminals and conductors Figure 3 – Example of a CLASS I ME EQUIPMENT Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT Figure 5 – Schematic flow chart for component qualification (see 4.8) Figure 6 – Standard test finger (see 5.9.2.1) Figure 8 – Test pin (see 8.4.2 d) Figure 9 – Application of test voltage to bridged PATIENT CONNECTIONS for DEFIBRILLATION-PROOF APPLIED PARTS (see 8.5.5.1) Figure 10 – Application of test voltage to individual PATIENT CONNECTIONS for DEFIBRILLATION-PROOF APPLIED PARTS (see 8.5.5.1) Figure 11 – Application of test voltage to test the delivered defibrillation energy	

Figure 13 – Measuring circuit for EARTH LEAKAGE CURRENT of CLASS I ME EQUIPMENT, with or without APPLIED PART	. 100
Figure 14 – Measuring circuit for TOUCH CURRENT	. 101
Figure 15 – Measuring circuit for PATIENT LEAKAGE CURRENT from the PATIENT CONNECTION to earth	102
Figure 16 – Measuring circuit for PATIENT LEAKAGE CURRENT via the PATIENT CONNECTION(S) of an F-TYPE APPLIED PART to earth caused by an external voltage on the PATIENT CONNECTION(S)	. 103
Figure 17 – Measuring circuit for PATIENT LEAKAGE CURRENT from PATIENT CONNECTION(S) to earth caused by an external voltage on a SIGNAL INPUT/OUTPUT PART	104
Figure 18 – Measuring circuit for PATIENT LEAKAGE CURRENT from PATIENT CONNECTION(S) to earth caused by an external voltage on a metal ACCESSIBLE PART that is not PROTECTIVELY EARTHED	105
Figure 19 – Measuring circuit for PATIENT AUXILIARY CURRENT	. 106
Figure 20 – Measuring circuit for total PATIENT LEAKAGE CURRENT with all PATIENT CONNECTIONS of all APPLIED PARTS of the same type (TYPE B APPLIED PARTS, TYPE BF	
APPLIED PARTS OR TYPE CF APPLIED PARTS) connected together	. 107
Figure 21 – Ball-pressure test apparatus	. 118
Figure 22 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 1	. 130
Figure 23 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 2	. 130
Figure 24 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 3	. 130
Figure 25 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 4	. 131
Figure 26 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 5	. 131
Figure 27 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 6	. 131
Figure 28 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 7	. 131
Figure 29 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 8	. 132
Figure 30 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 9	. 132
Figure 31 – CREEPAGE DISTANCE and AIR CLEARANCE – Example 10	. 132
Figure 32 – Ratio between HYDRAULIC TEST PRESSURE and MAXIMUM PERMISSIBLE WORKING PRESSURE	. 156
Figure 33 – Body upper-carriage module	. 162
Figure 34 – Spark ignition test apparatus	. 171
Figure 35 – Maximum allowable current I as a function of the maximum allowable voltage U measured in a purely resistive circuit in an OXYGEN RICH ENVIRONMENT	172
Figure 36 – Maximum allowable voltage U as a function of the capacitance C measured in a capacitive circuit used in an OXYGEN RICH ENVIRONMENT	. 172
Figure 37 – Maximum allowable current <i>I</i> as a function of the inductance <i>L</i> measured in an inductive circuit in an OXYGEN RICH ENVIRONMENT	173
Figure 38 – Baffle	. 176
Figure 39 – Area of the bottom of an ENCLOSURE as specified in 11.3 b) 1)	. 177
Figure A.1 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in an ECG monitor	. 221
Figure A.2 – Example of the insulation of an F-TYPE APPLIED PART with the insulation incorporated in the ME EQUIPMENT	222

Figure A.3 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in a PATIENT monitor with invasive pressure monitoring facility	222
Figure A.4 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in a multifunction PATIENT monitor with invasive pressure monitoring facilities	223
Figure A.5 – Identification of APPLIED PARTS and PATIENT CONNECTIONS in an X-ray ME	224
Figure A.6 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in a transcutaneous electronic nerve stimulator (TENS) intended to be worn on the PATIENT'S belt and connected to electrodes applied to the PATIENT'S upper arm	225
Figure A.7 – Identification of ME EQUIPMENT OR ME SYSTEM, APPLIED PARTS and PATIENT CONNECTIONS in a personal computer with an ECG module	226
Figure A.8 – Pictorial representation of the relationship of HAZARD, sequence of events, HAZARDOUS SITUATION and HARM	229
Figure A.9 – Example of PATIENT ENVIRONMENT	235
Figure A.10 – Floating circuit	254
Figure A.11 – Interruption of a power-carrying conductor between ME EQUIPMENT parts in separate ENCLOSURES	256
Figure A.12 – Identification of MEANS OF PATIENT PROTECTION and MEANS OF OPERATOR PROTECTION	260
Figure A.13 – Allowable protective earth impedance where the fault current is limited	267
Figure A.14 – Probability of ventricular fibrillation	273
Figure A.15 – Example of a measuring circuit for the PATIENT LEAKAGE CURRENT from a PATIENT CONNECTION to earth for ME EQUIPMENT with multiple PATIENT CONNECTIONS	278
Figure A.16 – Instability test conditions	290
Figure A.17 – Example of determining TENSILE SAFETY FACTOR using Table 21	297
Figure A.18 – Example of determining design and test loads	298
Figure A.19 – Example of human body mass distribution	298
Figure A.20 – Relationship of the terms used to describe equipment, ACCESSORIES or equipment parts	231
Figure A.21 – Example of ME EQUIPMENT having two different functions on one common APPLIED PART circuit	265
Figure A.22 – Maximum allowable temperature for surfaces and APPLIED PARTS at higher altitudes	303
Figure A.23 – Example of the needed MEANS OF OPERATOR PROTECTION between the terminals of an INTERNAL ELECTRICAL POWER SOURCE and a subsequent protective	
device	322
Figure E.1 – Type B Applied part	346
Figure E.2 – Type BF APPLIED PART	346
Figure E.3 – Type CF APPLIED PART	347
Figure E.4 – PATIENT AUXILIARY CURRENT	347
Figure E.5 – Loading of the PATIENT CONNECTIONS if specified by the MANUFACTURER	348
Figure F.1 – Measuring supply circuit with one side of the SUPPLY MAINS at approximately earth potential	349
Figure F.2 – Measuring supply circuit with SUPPLY MAINS approximately symmetrical to earth potential	349

Figure F.3 – Measuring supply circuit for polyphase ME EQUIPMENT specified for connection to a polyphase SUPPLY MAINS	350
Figure F.4 – Measuring supply circuit for single-phase ME EQUIPMENT specified for connection to a polyphase SUPPLY MAINS	350
Figure F.5 – Measuring supply circuit for ME EQUIPMENT having a separate power supply unit or intended to receive its power from another equipment in an ME SYSTEM	351
Figure G.1– Maximum allowable current I_{ZR} as a function of the maximum allowable voltage U_{ZR} measured in a purely resistive circuit with the most flammable mixture of ether vapour with air	358
Figure G.2 – Maximum allowable voltage U_{zc} as a function of the capacitance C_{max} measured in a capacitive circuit with the most flammable mixture of ether vapour with air	359
Figure G.3 – Maximum allowable current I_{ZL} as a function of the inductance L_{max} measured in an inductive circuit with the most flammable mixture of ether vapour with air	359
Figure G.4 – Maximum allowable current I_{ZR} as a function of the maximum allowable voltage U_{ZR} measured in a purely resistive circuit with the most flammable mixture of ether vapour with oxygen	363
Figure G.5 – Maximum allowable voltage U_{ZC} as a function of the capacitance C_{max} measured in a capacitive circuit with the most flammable mixture of ether vapour with oxygen	364
Figure G.6 – Maximum allowable current IZL as a function of the inductance Lmax measured in an inductive circuit with the most flammable mixture of ether vapour with oxygen	365
Figure G.7 – Test apparatus	366
Figure H.1 – Examples of PEMS/ PESS structures	368
Figure H.2 – A PEMS DEVELOPMENT LIFE-CYCLE model	369
Figure H.3 – Not used	370
Figure H.4 – Example of potential parameters required to be specified for an IT-NETWORK	374
Figure I.1 – Example of the construction of a multiple socket-outlet (mso)	379
Figure I.2 – Examples of application of MULTIPLE SOCKET-OUTLETS (MSO)	380
Figure J.1 – Insulation example 1	381
Figure J.2 – Insulation example 2	381
Figure J.3 – Insulation example 3	382
Figure J.4 – Insulation example 4	382
Figure J.5 – Insulation example 5	382
Figure J.6 – Insulation example 6	383
Figure J.7 – Insulation example 7	383
Figure K.1 – ME EQUIPMENT with an ENCLOSURE made of insulating material	384
Figure K.2 – ME EQUIPMENT with an F-TYPE APPLIED PART	384
Figure K.3 – ME EQUIPMENT with an APPLIED PART and a SIGNAL INPUT/OUTPUT PART	385
Figure K.4 – ME EQUIPMENT with a PATIENT CONNECTION of a TYPE B APPLIED PART that is not PROTECTIVELY EARTHED	385
Figure K.5 – ME EQUIPMENT with a PATIENT CONNECTION of a TYPE BF APPLIED PART that	386

Table 1 – Units outside the SI units system that may be used on ME EQUIPMENT	69
Table 2 – Colours of indicator lights and their meaning for ME EQUIPMENT	72
Table 3 – * Allowable values of PATIENT LEAKAGE CURRENTS and PATIENT AUXILIARY CURRENTS under NORMAL CONDITION and SINGLE FAULT CONDITION	98
Table 4 – * Allowable values of PATIENT LEAKAGE CURRENTS under the special test conditions identified in 8.7.4.7	99
Table 5 – Legends of symbols for Figure 9 to Figure 11, Figure 13 to Figure 20, Figure A.15, Annexes E and F	108
Table 6 – Test voltages for solid insulation forming a MEANS OF PROTECTION	. 115
Table 7 – Test voltages for MEANS OF OPERATOR PROTECTION	. 116
Table 8 – Multiplication factors for AIR CLEARANCES for altitudes up to 5 000 m	. 119
Table 9 – Material group classification	. 120
Table 10 – Mains transient voltage	. 121
Table 11 – Not used	. 122
Table 12 – Minimum CREEPAGE DISTANCES and AIR CLEARANCES providing MEANS OF PATIENT PROTECTION	123
Table 13 – Minimum AIR CLEARANCES providing MEANS OF OPERATOR PROTECTION from the MAINS PART	124
Table 14 – Additional AIR CLEARANCES for insulation in MAINS PARTS with PEAK WORKING VOLTAGES exceeding the peak value of the NOMINAL MAINS VOLTAGE ^a	125
Table 15 – Minimum AIR CLEARANCES for MEANS OF OPERATOR PROTECTION in SECONDARY CIRCUITS	126
Table 16 – Minimum CREEPAGE DISTANCES providing MEANS OF OPERATOR PROTECTION ^a	. 127
Table 17 – NOMINAL cross-sectional area of conductors of a POWER SUPPLY CORD	. 136
Table 18 – Testing of cord anchorages	. 137
Table 19 – MECHANICAL HAZARDS covered by this clause	. 141
Table 20 – Acceptable gaps ª	. 143
Table 21 – Determination of TENSILE SAFETY FACTOR	. 158
Table 22 – Allowable maximum temperatures of parts	. 166
Table 23 – Allowable maximum temperatures for ME EQUIPMENT parts that are likely to be touched	166
Table 24 – Allowable maximum temperatures for skin contact with ME EQUIPMENT APPLIED PARTS	167
Table 25 – Acceptable perforation of the bottom of an ENCLOSURE	. 176
Table 26 – * Temperature limits of motor windings	. 186
Table 27 – Maximum motor winding steady-state temperature	. 188
Table 28 – Mechanical strength test applicability	. 195
Table 29 – Drop height	. 196
Table 30 – Test torques for rotating controls	. 202
Table 31 – Maximum allowable temperatures of transformer windings under overload and short-circuit conditions at 25 °C (± 5 °C) ambient temperature	204
Table 32 – Test current for transformers	. 205
Table 33 – Test conditions for overtravel end stop test	. 146

Table A.1 – Values of AIR CLEARANCE and CREEPAGE DISTANCE derived from Table 7 of IEC 61010-1:2001 and Table 12	281
Table A.2 – CREEPAGE DISTANCES to avoid failure due to tracking from IEC 60664-1	282
Table A.3 – Instability test conditions	290
Table A.4 – Allowable time exposure for level of acceleration	293
Table A.5 – Guidance on surface temperatures for ME EQUIPMENT that creates low temperatures (cools) for therapeutic purposes or as part of its operation	302
Table C.1- Marking on the outside of ME EQUIPMENT, ME SYSTEMS or their parts	334
Table C.2 – Marking on the inside of ME EQUIPMENT, ME SYSTEMS or their parts	335
Table C.3 – Marking of controls and instruments	335
Table C.4 – Accompanying documents, general	335
Table C.5 – ACCOMPANYING DOCUMENTS, instructions for use	336
Table D.1 – General symbols	338
Table D.2 – Safety signs	343
Table D.3 – General codes	345
Table H.1 – Not used	373
Table I.1 – Some examples of ME SYSTEMS for illustration	377
Table G.1 – Gas-tightness of cord inlets	361
Table L.1– Mandrel diameter	388
Table L.2 – Oven temperature	388
Table M.1 – Reduction of the pollution degree of internal environment through the use of additional protection	390

National Foreword

This Singapore Standard was prepared by the National Mirror Working Group on IEC SC62D MT20 appointed by the Technical Committee on Medical Devices under the direction of the Biomedical and Health Standards Committee.

This standard is identical with IEC 60601-1:2005+A1:2012, "Medical electrical equipment – Part 1: General requirements for basic safety and essential performance", published by the International Electrotechnical Commission.

Attention is drawn to the following:

- 1. Where appropriate, the words "International Standard" shall be read as "Singapore Standard".
- 2. Where reference to a particular part of IEC 60601 is made, the appropriate Singapore Standard (which is an identical adoption of that part of IEC 60601) shall be referenced. The reference to other International Standards shall be replaced by the following Singapore Standards:

nternational Standard SO 11137-1:2006	Corresponding Singapore Standard SS ISO 11137-1 : 2018
ISO 14971	SS ISO 14971
ISO 14971:2007	SS ISO 14971 : 2017

3. The comma has been used throughout as a decimal marker whereas in Singapore Standards it is a practice to use a full point on the baseline as the decimal marker.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEDICAL ELECTRICAL EQUIPMENT -

Part 1: General requirements for basic safety and essential performance

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of IEC 60601-1 consists of the third edition (2005) [documents 62A/505A/FDIS and 62A/512/RVD], its amendment 1 (2012) [documents 62A/805/FDIS and 62A/820/RVD], its corrigenda of December 2006 and 2007, the corrigendum of its amendment 1 of July 2014, and the interpretations sheets of April 2008, January 2009 and May 2013. It bears the edition number 3.1.

This Final version does not show where the technical content is modified by amendment 1. A separate Redline version with all changes highlighted is available in this publication.

International Standard IEC 60601-1 has been prepared by subcommittee 62A: Common aspects of electrical equipment used in medical practice, of IEC technical committee 62: Electrical equipment in medical practice.

This third edition cancels and replaces the second edition published in 1988, its Amendment 1 (1991) and Amendment 2 (1995), the second edition of IEC 60601-1-1 published in 2000 and the first edition of IEC 60601-1-4 published in 1996 and its Amendment 1 (1999). This edition constitutes a technical revision. This edition has been significantly restructured. Requirements in the electrical section have been further aligned with those for information technology equipment covered by IEC 60950-1 and a requirement for including a RISK MANAGEMENT PROCESS has been added. For an expanded description of this revision, see Annex A.3.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this standard the following print types are used:

- Requirements and definitions: in roman type.
- Test specifications: in italic type.
- Informative material appearing outside of tables, such as notes, examples and references: in smaller type.
 Normative text of tables is also in a smaller type.
- TERMS USED THROUGHOUT THIS STANDARD THAT HAVE BEEN DEFINED IN CLAUSE 3 AND ALSO GIVEN IN THE INDEX: IN SMALL CAPITALS.

In referring to the structure of this standard, the term

- "clause" means one of the seventeen numbered divisions within the table of contents, inclusive of all subdivisions (e.g. Clause 7 includes subclauses 7.1, 7.2, etc.);
- "subclause" means a numbered subdivision of a clause (e.g. 7.1, 7.2 and 7.2.1 are all subclauses of Clause 7).

References to clauses within this standard are preceded by the term "Clause" followed by the clause number. References to subclauses within this standard are by number only.

In this standard, the conjunctive "or" is used as an "inclusive or" so a statement is true if any combination of the conditions is true.

The verbal forms used in this standard conform to usage described in Annex G of the ISO/IEC Directives, Part 2. For the purposes of this standard, the auxiliary verb:

- "shall" means that compliance with a requirement or a test is mandatory for compliance with this standard;
- "should" means that compliance with a requirement or a test is recommended but is not mandatory for compliance with this standard;
- "may" is used to describe a permissible way to achieve compliance with a requirement or test.

An asterisk (*) as the first character of a title or at the beginning of a paragraph or table title indicates that there is guidance or rationale related to that item in Annex A.

The committee has decided that the contents of the base publication and its amendment will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

NOTE The attention of National Committees is drawn to the fact that equipment manufacturers and testing organizations may need a transitional period following publication of a new, amended or revised IEC or ISO publication in which to make products in accordance with the new requirements and to equip themselves for conducting new or revised tests. It is the recommendation of the committee that the content of this publication be adopted for mandatory implementation nationally not earlier than 3 years from the date of publication.

The content of the corrigendum of November 2012 have been included in this copy.

IMPORTANT – The "colour inside" logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.

INTRODUCTION

In 1976, IEC subcommittee 62A published the first edition of IEC/TR 60513, *Basic aspects of the safety philosophy for electrical equipment used in medical practice*. The first edition of IEC/TR 60513 provided the basis for developing:

- the first edition of IEC 60601-1 (the parent safety standard for MEDICAL ELECTRICAL EQUIPMENT);
- the IEC 60601-1-xx series of collateral standards for MEDICAL ELECTRICAL EQUIPMENT;
- the IEC 60601-2-xx series of particular standards for particular types of MEDICAL ELECTRICAL EQUIPMENT; and
- the IEC 60601-3-xx series of performance standards for particular types of MEDICAL ELECTRICAL EQUIPMENT.

Aware of the need and the urgency for a standard covering electrical equipment used in medical practice, the majority of National Committees voted in 1977 in favour of the first edition of IEC 60601-1, based on a draft that at the time represented a first approach to the problem. The extent of the scope, the complexity of the equipment concerned, and the specific nature of some of the protective measures and the corresponding tests for verifying them, required years of effort in order to prepare this first standard, which can now be said to have served as a universal reference since its publication.

However, the frequent application of the first edition revealed room for improvement. These improvements were all the more desirable in view of the considerable success that this standard has enjoyed since its publication.

The careful work of revision subsequently undertaken and continued over a number of years resulted in the publication of the second edition in 1988. This edition incorporated all the improvements that could be reasonably expected up to that time. Further developments remained under constant study. The second edition was amended in 1991 and then again in 1995.

The original IEC approach was to prepare separate BASIC SAFETY and performance standards for MEDICAL ELECTRICAL EQUIPMENT. This was a natural extension of the historical approach taken at the national and international level with other electrical equipment standards (e.g. those for domestic equipment), where BASIC SAFETY is regulated through mandatory standards but other performance specifications are regulated by market pressure. In this context, it has been said that, "The ability of an electric kettle to boil water is not critical to its safe use!"

It is now recognized that this is not the situation with many items of MEDICAL ELECTRICAL EQUIPMENT, and RESPONSIBLE ORGANIZATIONS have to depend on standards to ensure ESSENTIAL PERFORMANCE as well as BASIC SAFETY. Such areas include the accuracy with which the equipment controls the delivery of energy or therapeutic substances to the PATIENT, or processes and displays physiological data that will affect PATIENT management.

This recognition means that separating BASIC SAFETY and performance is somewhat inappropriate in addressing the HAZARDS that result from inadequate design of MEDICAL ELECTRICAL EQUIPMENT. Many particular standards in the IEC 60601-2-xx series address a range of ESSENTIAL PERFORMANCE requirements that cannot be directly evaluated by the RESPONSIBLE ORGANIZATION without applying such standards. (However, the current IEC 60601 series includes fewer requirements for ESSENTIAL PERFORMANCE than for BASIC SAFETY).

In anticipation of a third edition of IEC 60601-1, IEC subcommittee 62A prepared a second edition of IEC/TR 60513 $[12]^{1)}$ in 1994. It was intended that the second edition of IEC/TR

¹⁾ Figures in square brackets refer to the Bibliography.

60513 would provide guidance for developing this edition of IEC 60601-1, and for the further development of the IEC 60601-1-xx and IEC 60601-2-xx series.

In order to achieve consistency in international standards, address present expectations in the health care community and align with developments in IEC 60601-2-xx, the second edition of IEC/TR 60513 includes two major new principles:

- the first change is that the concept of "SAFETY" has been broadened from the BASIC SAFETY considerations in the first and second editions of IEC 60601-1 to include ESSENTIAL PERFORMANCE matters, (e.g. the accuracy of physiological monitoring equipment). Application of this principle leads to the change of the title of this publication from "Medical electrical equipment, Part 1: General requirements for safety" in the second edition, to "Medical electrical equipment, Part 1: General requirements for basic safety and essential performance";
- the second change is that, in specifying minimum safety requirements, provision is made for assessing the adequacy of the design PROCESS when this is the only practical method of assessing the safety of certain technologies such as programmable electronic systems. Application of this principle is one of the factors leading to introduction of a general requirement to carry out a RISK MANAGEMENT PROCESS. In parallel with the development of the third edition of IEC 60601-1, a joint project with ISO/TC 210 resulted in the publication of a general standard for RISK MANAGEMENT of medical devices. Compliance with this edition of IEC 60601-1 requires that the MANUFACTURER have in place a RISK MANAGEMENT PROCESS complying with parts of ISO 14971 (see 4.2).

This standard contains requirements concerning BASIC SAFETY and ESSENTIAL PERFORMANCE that are generally applicable to MEDICAL ELECTRICAL EQUIPMENT. For certain types of MEDICAL ELECTRICAL EQUIPMENT, these requirements are either supplemented or modified by the special requirements of a collateral or particular standard. Where particular standards exist, this standard should not be used alone.

Amendment 1 to this standard is intended to address:

- issues identified by National Committees and other interested parties since the publication of IEC 60601-1:2005;
- the way in which RISK MANAGEMENT has been introduced into IEC 60601-1:2005; and
- the way the concept of ESSENTIAL PERFORMANCE is used in IEC 60601-1:2005.

INTRODUCTION TO THE AMENDMENT

The third edition of IEC 60601-1 was published in 2005. At the time of publication, there were 94 National Committee comments on the 2nd CDV and the FDIS that were deferred to a future amendment/revision. Each of their deferred comments was captured in an Issue Sheet by the SC 62A secretariat. By the time of the Auckland meeting in April 2008, the Subcommittees had developed two Interpretation Sheets and the SC 62A secretariat has received an additional 15 issues from National Committees and other interested parties.

At the Auckland meeting, IEC/TC 62 approved a project to develop the 1st amendment to IEC 60601-1:2005 based on the issues outstanding at the time. The TC approved developing the 1st amendment with a view to addressing outstanding issues, including but not limited to:

- those listed in 62A/593/DC and 62A/602/INF;
- the way in which risk management has been introduced into IEC 60601-1:2005; and
- the way the concept of essential performance is used in IEC 60601-1:2005.

Since the Auckland meeting, the secretariat has received 73 additional issues from National Committees or other interested parties for a total of 182 Issues Sheets. This amendment is intended to address those issues.

MEDICAL ELECTRICAL EQUIPMENT -

Part 1: General requirements for basic safety and essential performance

1 Scope, object and related standards

1.1 * Scope

This International Standard applies to the BASIC SAFETY and ESSENTIAL PERFORMANCE of MEDICAL ELECTRICAL EQUIPMENT and MEDICAL ELECTRICAL SYSTEMS, hereafter referred to as ME EQUIPMENT and ME SYSTEMS.

If a clause or subclause is specifically intended to be applicable to ME EQUIPMENT only, or to ME SYSTEMS only, the title and content of that clause or subclause will say so. If that is not the case, the clause or subclause applies both to ME EQUIPMENT and to ME SYSTEMS, as relevant.

HAZARDS inherent in the intended physiological function of ME EQUIPMENT or ME SYSTEMS within the scope of this standard are not covered by specific requirements in this standard except in 7.2.13 and 8.4.1.

NOTE 1 See also 4.2.

The IEC 60601 series does not apply to:

- in vitro diagnostic equipment that does not fall within the definition of ME EQUIPMENT, which is covered by the IEC 61010 series [61];
- implantable parts of active implantable medical devices covered by the ISO 14708 series [69]; or
- medical gas pipeline systems covered by ISO 7396-1 [68].

NOTE 2 ISO 7396-1 applies the requirement of IEC 60601-1-8 to certain monitoring and ALARM SIGNALS.