SS ISO 22400-2 : 2019 ISO 22400-2:2014, IDT (ICS 25.040.01)

SINGAPORE STANDARD

Automation systems and integration – Key performance indicators (KPIs) for manufacturing operations management

- Part 2: Definitions and descriptions

SS ISO 22400-2 : 2019 ISO 22400-2:2014, IDT

(ICS 25.040.01)

SINGAPORE STANDARD

Automation systems and integration – Key performance indicators (KPIs) for manufacturing operations management

- Part 2: Definitions and descriptions

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© ISO 2014 – All rights reserved © Enterprise Singapore 2019

ISBN 978-981-48-9441-8

The content of this Singapore Standard was approved on 17 October 2019 by the Manufacturing Standards Committee (MSC) under the purview of the Singapore Standards Council.

First published, 2019

MSC consists of the following members:

		Name	Representation
Chairman	:	Dr John Yong	Individual Capacity
Deputy Chairman	:	Mr Brandon Lee	Individual Capacity
Secretary	:	Mr Lee Wei Guo	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Dr Karen Chong Ms Fong Pin Fen Mr Goh Wee Hong Mr Ho Chi Bao	Science Engineering Research Council Economic Development Board TÜV SÜD PSB Pte Ltd Enterprise Singapore
		Mr Steven Koh	Singapore Precision Engineering Technology Association
		Ms Lee Wan Sie	Infocomm Media Development Authority
		Dr Jim Li Hui Hong	Individual Capacity
		Dr Lim Ee Meng	National Metrology Centre
		Er. Prof Seeram Ramakrishna	The Institution of Engineers, Singapore
		Mr Sze Thiam Siong	Setsco Services Pte Ltd

MSC sets up the Technical Committee on Smart Manufacturing to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Representation
Co-Chairmen	:	Mr Yeoh Pit Wee Dr Tap Puay Siew	Individual Capacity
		Di Tali Fuay Siew	
Secretary	:	Mr Louis Lauw	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Mr Ang Wee Seng	Singapore Semiconductor Industry Association
		Dr Ian Chan Hian Leng	Singapore Institute of Manufacturing Technology
		Mr Cheong Siah Chong	Singapore Industrial Automation Association
		Mr David Chia	Beckhoff Automation Pte Ltd
		Dr Andreas Hauser	TÜV SÜD Asia Pacific Pte Ltd
		Mr Sunny Khoo	Toshiba TEC Singapore Pte Ltd
		Mr Brandon Lee	Singapore Manufacturing Federation
		Prof Lee Loo Hay	National University of Singapore
		Mr Zach Lee	Siemens Industry Software Pte Ltd
		Mr Gerry Ong	SMT Technology Pte Ltd
		Prof John Pang	Nanyang Technological University

Members	:	Er. Prof Seeram Ramakrishna	The Institution of Engineers, Singapore
		Mr Sim Bak Chor	Infocomm Media Development Authority
		Mr Tian Boon Quey	TRUMPF Pte Ltd
		Mr Toh Hong Wee	PBA Systems Pte Ltd
		Dr Carlos Toro	Advanced Remanufacturing Technology Centre

The Technical Committee sets up the Working Group on Smart Manufacturing Readiness Level to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

		Name
Co-Convenors	:	Mr Brandon Lee
		Mr Shridhar Ravikumar
Secretary	:	Mr Louis Lauw
Members	:	Dr Ian Chan Hian Leng
		Mr Cheong Siah Chong
		Mr David Chia
		Dr Andreas Hauser
		Mr Michael Leong
		Dr Lin Wei
		Dr Gary Ng
		Prof John Pang
		Dr Tan Puay Siew
		Mr Yeoh Pit Wee

The organisations in which the experts of the Working Group are involved are:

Advanced Remanufacturing Technology Centre Beckhoff Automation Pte Ltd INTECH Process Automation Pte Ltd Nanyang Technological University Rockwell Automation Southeast Asia Pte Ltd SESTO Robotics Pte Ltd Singapore Industrial Automation Association Singapore Institute of Manufacturing Technology TÜV SÜD Asia Pacific Pte Ltd

(blank page)

4 COPYRIGHT

Contents

Page

Nation	l Foreword	6
Forew	rd	7
Introd	ction	8
1	Scope	11
2	Ferms and definitions	11
3	Symbols and abbreviated terms	12
4	Structure of KPI description	13
5	Elements used in KPI description5.1Time elements5.2Time model for work units5.3Time model for production order5.4Time model for personnel5.5Logistical elements5.6Quality elements5.7Quality elements	14 14 17 18 19 19 21 21
6	Description of KPIs	22
7	Conformance	53
Annex	(normative) Effect models	54
Annex	(informative) Alternative OEE calculation based on loss time model	72
Biblio	aphy	76

National Foreword

This Singapore Standard was prepared by the Working Group on Smart Manufacturing Readiness Level set up by the Technical Committee on Smart Manufacturing under the purview of MSC.

This standard is identical with ISO 22400-2:2014, "Automation systems and integration – Key performance indicators (KPIs) for manufacturing operations management – Part 2: Definitions and descriptions" published by the International Organization for Standardization.

This standard is expected to be used by system integrators, government agencies, testing, inspection and certification bodies, professional institutions, institutes of higher learning and training providers.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature Standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: <u>Foreword - Supplementary information</u>

The committee responsible for this document is Technical Committee ISO/TC 184, Automation systems and integration, Subcommittee SC 5, Interoperability, integration and architectures of automation systems and applications.

ISO 22400 consists of the following parts, under the general title *Automation systems and integration* — *Key performance indicators (KPIs) for manufacturing operations management*

- Part 1: Overview, concepts and terminology
- Part 2: Definitions and descriptions

The following parts are under preparation:

- Part 3: Exchange and use
- Part 4: Relationships and dependencies

Introduction

This part of ISO 22400 focuses on key performance indicators (KPIs) for manufacturing operations management.

KPIs are defined as quantifiable and strategic measurements that reflect an enterprise's critical success factors. KPIs are very important for understanding and improving manufacturing performance, both from the lean manufacturing perspective of eliminating waste and from the corporate perspective of achieving strategic goals.

Manufacturing operations management (MOM) is a term used in IEC 62264 to specify a portion of the functional hierarchy model of a manufacturing enterprise. Figure 1 depicts the different levels of the functional hierarchy model: business planning and logistics (Level 4), manufacturing operations and control (Level 3), and batch, continuous, or discrete control (Level 1-2). The levels provide different functions and work in different timeframes.

Figure 1 — Functional hierarchy

IEC 62264 also specifies a hierarchical structure for the physical equipment (see Figure 2). Enterprise, site and areas are generic terms, whereas there are specific terms for work centres and work units that apply to batch production, continuous production, discrete or repetitive production, and for storage and movement of materials and equipment.

NOTE Adapted from IEC 62264-3.

Figure 2 — Role based equipment hierarchy

This part of ISO 22400 specifies the KPIs "residing" at Level 3, i.e. related to MOM. These KPIs are generated/calculated within Level 3. Some of these KPIs are forwarded to Level 4 for further usage. In order to generate these KPIs, parameters from Levels 2 and 1 might be needed.

The KPIs in this part of ISO 22400 use the most generic terms possible (e.g. work centres and work units), instead of industry specific terms.

MOM, sometimes referred to as manufacturing execution systems (MES), models four major categories of operations management:

- production operations management;
- maintenance operations management;
- quality operations management;
- inventory operations management.

An activity model further details each category. Each activity model includes eight activities:

- detailed scheduling;
- dispatching;
- execution management;

- resource management;
- definition management;
- tracking;
- data collection;
- analysis.

These activities apply to production operations, quality operations, inventory operations and maintenance operations.

Analysis is the performance of calculating KPIs using information from other activities. Workflows can be used to illustrate the important events and steps needed in the calculation process for KPIs.

KPIs alone are not sufficient factors to perform the necessary management and execution operations for an enterprise. For many of the indicators, a company specific threshold is defined. When the value of the indicator exceeds or falls below the threshold, actions are initiated (e.g. to improve efficiency or quality). Often it is necessary to define warning and action limits. Warning limits help to detect the trends in process and equipment changes before company-specific thresholds are violated.

To improve the productivity of the manufacturing resources, information provided by industrial automation systems and control devices about process, equipment, operator, and material can be useful for providing critical feedback through KPIs.

A standardized schema for the expression of these KPIs is intended to:

- a) facilitate the specification and procurement of integrated systems, in particular, the interoperability requirements among MES applications;
- b) provide a means to categorize productivity tools that can be used across applications.

ISO 22400 provides an overview of the concepts, the terminology and the methods to describe and to exchange KPIs for the purpose of managing manufacturing operations. The audience is factory managers responsible for production performance, software suppliers developing KPIs for factory management, engineers engaged in process planning of products, planners and designers of manufacturing systems, and equipment and device suppliers.

KPIs also reside at Level 4, i.e. KPIs related to business planning and logistics, which are outside the scope of this part of ISO 22400. Level 4 KPIs are often related to economic, business, logistic and financial factors. These KPIs are used to assess the progress or extent of compliance with regard to important objectives or critical success factors within a company. Economic KPIs serve as a basis for decisions (problem identification, presentation, information extraction), for economic control (target/actual comparison), for financial documentation and for coordination (behaviour management) of important facts and relationships within the company.

Automation systems and integration — Key performance indicators (KPIs) for manufacturing operations management — Part 2: Definitions and descriptions

1 Scope

ISO 22400 specifies key performance indicators (KPIs) used in manufacturing operations management (MOM).

This part of ISO 22400 specifies a selected number of KPIs in current practice. The KPIs are presented by means of their formula and corresponding elements, their time behaviour, their unit/dimension and other characteristics. This part of ISO 22400 also indicates the user group where the KPIs are used, and the production methodology to which they correspond.

With reference to equipment, the KPIs in this part of ISO 22400 relate to work units, as specified in IEC 62264.