SINGAPORE STANDARD

Enterprise-control system integration
– Part 4 : Object model attributes for manufacturing operations management integration
The content of this Singapore Standard was approved on 17 October 2019 by the Manufacturing Standards Committee (MSC) under the purview of the Singapore Standards Council.

First published, 2019

MSC consists of the following members:

<table>
<thead>
<tr>
<th>Name</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Chairman</strong></td>
<td>Dr John Yong</td>
</tr>
<tr>
<td><strong>Deputy Chairman</strong></td>
<td>Mr Brandon Lee</td>
</tr>
<tr>
<td><strong>Secretary</strong></td>
<td>Mr Lee Wei Guo</td>
</tr>
<tr>
<td><strong>Members</strong></td>
<td>Dr Karen Chong</td>
</tr>
<tr>
<td></td>
<td>Ms Fong Pin Fen</td>
</tr>
<tr>
<td></td>
<td>Mr Goh Wee Hong</td>
</tr>
<tr>
<td></td>
<td>Mr Ho Chi Bao</td>
</tr>
<tr>
<td></td>
<td>Mr Steven Koh</td>
</tr>
<tr>
<td></td>
<td>Ms Lee Wan Sie</td>
</tr>
<tr>
<td></td>
<td>Dr Jim Li Hui Hong</td>
</tr>
<tr>
<td></td>
<td>Dr Lim Ee Meng</td>
</tr>
<tr>
<td></td>
<td>Er. Prof Seeram Ramakrishna</td>
</tr>
<tr>
<td></td>
<td>Mr Sze Thiam Siong</td>
</tr>
<tr>
<td></td>
<td><strong>Science Engineering Research Council</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Economic Development Board</strong></td>
</tr>
<tr>
<td></td>
<td><strong>TÜV SÜD PSB Pte Ltd</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Enterprise Singapore</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Singapore Precision Engineering Technology</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Association</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Infocomm Media Development Authority</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Individual Capacity</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Singapore Manufacturing Federation – Standards</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Development Organisation</strong></td>
</tr>
<tr>
<td></td>
<td><strong>National Metrology Centre</strong></td>
</tr>
<tr>
<td></td>
<td><strong>The Institution of Engineers, Singapore</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Setsco Services Pte Ltd</strong></td>
</tr>
</tbody>
</table>

MSC sets up the Technical Committee on Smart Manufacturing to oversee the preparation of this standard. The Technical Committee consists of the following members:

<table>
<thead>
<tr>
<th>Name</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Co-Chairmen</strong></td>
<td>Mr Yeoh Pit Wee</td>
</tr>
<tr>
<td></td>
<td>Dr Tan Puay Siew</td>
</tr>
<tr>
<td><strong>Secretary</strong></td>
<td>Mr Louis Lauw</td>
</tr>
<tr>
<td><strong>Members</strong></td>
<td>Mr Ang Wee Seng</td>
</tr>
<tr>
<td></td>
<td>Dr Ian Chan Hian Leng</td>
</tr>
<tr>
<td></td>
<td>Mr Cheong Siah Chong</td>
</tr>
<tr>
<td></td>
<td>Mr David Chia</td>
</tr>
<tr>
<td></td>
<td>Dr Andreas Hauser</td>
</tr>
<tr>
<td></td>
<td>Mr Sunny Khoo</td>
</tr>
<tr>
<td></td>
<td>Mr Brandon Lee</td>
</tr>
<tr>
<td></td>
<td>Prof Lee Loo Hay</td>
</tr>
<tr>
<td></td>
<td>Mr Zach Lee</td>
</tr>
<tr>
<td></td>
<td>Mr Gerry Ong</td>
</tr>
<tr>
<td></td>
<td>Prof John Pang</td>
</tr>
<tr>
<td></td>
<td><strong>Singapore Semiconductor Industry Association</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Singapore Institute of Manufacturing Technology</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Singapore Industrial Automation Association</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Beckhoff Automation Pte Ltd</strong></td>
</tr>
<tr>
<td></td>
<td><strong>TÜV SÜD Asia Pacific Pte Ltd</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Toshiba TEC Singapore Pte Ltd</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Singapore Manufacturing Federation</strong></td>
</tr>
<tr>
<td></td>
<td><strong>National University of Singapore</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Siemens Industry Software Pte Ltd</strong></td>
</tr>
<tr>
<td></td>
<td><strong>SMT Technology Pte Ltd</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Nanyang Technological University</strong></td>
</tr>
</tbody>
</table>
Members : Er. Prof Seeram Ramakrishna, The Institution of Engineers, Singapore
Mr Sim Bak Chor, Infocomm Media Development Authority
Mr Tian Boon Quey, TRUMPF Pte Ltd
Mr Toh Hong Wee, PBA Systems Pte Ltd
Dr Carlos Toro, Advanced Remanufacturing Technology Centre

The Technical Committee sets up the Working Group on Smart Manufacturing Readiness Level to prepare this standard. The Working Group consists of the following experts who contribute in their individual capacity:

Name

Co-Convenors : Mr Brandon Lee
Mr Shridhar Ravikumar

Secretary : Mr Louis Lauw

Members : Dr Ian Chan Hian Leng
Mr Cheong Siah Chong
Mr David Chia
Dr Andreas Hauser
Mr Michael Leong
Dr Lin Wei
Dr Gary Ng
Prof John Pang
Dr Tan Puay Siew
Mr Yeoh Pit Wee

The organisations in which the experts of the Working Group are involved are:

Advanced Remanufacturing Technology Centre
Beckhoff Automation Pte Ltd
INTECH Process Automation Pte Ltd
Nanyang Technological University
Rockwell Automation Southeast Asia Pte Ltd
SESTO Robotics Pte Ltd
Singapore Industrial Automation Association
Singapore Institute of Manufacturing Technology
TÜV SÜD Asia Pacific Pte Ltd
7.4 Work definition attributes ................................................................. 32
7.5 Parameter specification ................................................................. 32
7.6 Personnel specification ................................................................. 32
7.7 Personnel specification property ....................................................... 33
7.8 Equipment specification ................................................................. 33
7.9 Equipment specification property ....................................................... 33
7.10 Physical asset specification ............................................................ 33
7.11 Physical asset specification property .................................................. 33
7.12 Material specification .................................................................. 33
7.13 Material specification property ......................................................... 33
7.14 Workflow specification .................................................................. 33
  7.14.1 Workflow specification model ...................................................... 33
  7.14.2 Workflow specification attributes .................................................. 35
  7.14.3 Workflow specification node ......................................................... 36
  7.14.4 Workflow specification node property ........................................... 36
  7.14.5 Workflow specification connection ................................................. 36
  7.14.6 Workflow specification connection property .................................. 37
  7.14.7 Workflow specification node type .................................................. 37
  7.14.8 Workflow specification node type property .................................... 37
  7.14.9 Workflow specification connection type ....................................... 38
  7.14.10 Workflow specification connection type property ....................... 38
8 Work schedule and job list models ....................................................... 39
  8.1 Work schedule ........................................................................... 39
  8.2 Work schedule attributes .............................................................. 41
  8.3 Work request attributes ................................................................. 42
  8.4 Job list definition ......................................................................... 43
  8.5 Job list attributes ........................................................................ 44
  8.6 Job order attributes ..................................................................... 44
  8.7 Job order parameter ..................................................................... 46
  8.8 Personnel requirement ................................................................. 46
  8.9 Personnel requirement property ...................................................... 46
  8.10 Equipment requirement ............................................................... 46
  8.11 Equipment requirement property .................................................. 46
  8.12 Physical asset requirement ............................................................ 46
  8.13 Physical asset requirement property .............................................. 46
  8.14 Material requirement ................................................................. 46
  8.15 Material requirement property ...................................................... 46
  8.16 Job order to work master relationship .......................................... 46
9 Work performance model ................................................................. 47
  9.1 Work performance ..................................................................... 47
  9.2 Work performance attributes ......................................................... 48
  9.3 Work response ............................................................................ 49
  9.4 Job response list .......................................................................... 50
  9.5 Job response ............................................................................... 51
  9.6 Job response data ....................................................................... 51
  9.7 Personnel actual .......................................................................... 51
9.8 Personnel actual property .......................................................... 51
9.9 Equipment actual ........................................................................ 52
9.10 Equipment actual property .......................................................... 52
9.11 Physical asset actual ................................................................. 52
9.12 Physical asset actual property ....................................................... 52
9.13 Material actual ........................................................................... 52
9.14 Material actual property .............................................................. 52
10 Work capability model ................................................................. 52
10.1 Work capability .......................................................................... 52
10.2 Work capability attributes ........................................................... 53
10.3 Personnel capability .................................................................... 54
10.4 Personnel capability property ....................................................... 54
10.5 Equipment capability ................................................................. 54
10.6 Equipment capability property ..................................................... 55
10.7 Physical asset capability ............................................................. 55
10.8 Physical asset capability property ................................................. 55
10.9 Material capability ..................................................................... 55
10.10 Material capability property ........................................................ 55
11 Work master capability model ....................................................... 55
11.1 Work master capability ............................................................... 55
11.2 Work master capability attributes ............................................... 56
11.3 Personnel capability ................................................................. 57
11.4 Personnel capability property ...................................................... 57
11.5 Equipment capability ................................................................. 57
11.6 Equipment capability property ..................................................... 57
11.7 Physical asset capability ............................................................. 58
11.8 Physical asset capability property ................................................. 58
11.9 Material capability .................................................................... 58
11.10 Material capability property ........................................................ 58
12 Work KPI model ........................................................................... 58
13 Work alert model .......................................................................... 58
13.1 Work alert .................................................................................. 58
13.2 Work alert definition ................................................................. 59
13.3 Work alert definition property ..................................................... 59
13.4 Work alert attributes ................................................................. 60
13.5 Work alert property ................................................................. 61
14 Work calendar model .................................................................... 61
14.1 Work calendar definition and work calendar .................................. 61
14.2 Work calendar definition ............................................................ 62
14.3 Work calendar definition entry .................................................... 63
14.4 Work calendar definition entry property ....................................... 64
14.5 Work calendar ........................................................................... 64
14.6 Work calendar entry ................................................................. 64
14.7 Work calendar entry property ..................................................... 65
15 Work documents ........................................................................... 65
Table 28 – Work response attributes.................................................................50
Table 29 – Job response list attributes............................................................50
Table 30 – Job response attributes.................................................................51
Table 31 – Work capability attributes.............................................................54
Table 32 – Work master capability attributes................................................57
Table 33 – Work alert definition attributes....................................................59
Table 34 – Work alert definition property attributes.......................................60
Table 35 – Examples of work alert properties................................................60
Table 36 – Work alert attributes....................................................................61
Table 37 – Work alert property attributes.......................................................61
Table 38 – Work calendar definition attributes..............................................63
Table 39 – Work calendar definition entry attributes.....................................63
Table 40 – Work calendar definition entry property attributes.......................64
Table 41 – Work calendar attributes...............................................................64
Table 42 – Work calendar entry attributes......................................................64
Table 43 – Work calendar entry property attributes.......................................65
Table 44 – Work record entry attributes.........................................................71
Table 45 – Additional event types and subtypes.............................................72
Table E.1 – Four-day 24-hour shift pattern example.......................................87
Table E.2 – Work calendar definition for 4-day 24-hour shift entry examples.....87
Table E.3 – Work calendar definition entry for 4-day 24-hour shift example.....88
Table E.4 – Work calendar entries for 2014 shift calendar............................89
Table E.5 – Work calendar definition for 2014 England bank holidays.............89
Table E.6 – Work calendar definition entries for 2014 England bank holidays...90
National Foreword

This Singapore Standard was prepared by the Working Group on Smart Manufacturing Readiness Level set up by the Technical Committee on Smart Manufacturing under the purview of MSC.

This standard is identical with IEC 62264-4:2019, “Enterprise-control system integration – Part 4: Object model attributes for manufacturing operations management integration”, published by the International Electrotechnical Commission

NOTE – Reference to International Standards are replaced by applicable Singapore Standards and Technical References.

This standard is expected to be used by system integrators, government agencies, testing, inspection and certification bodies, professional institutions, institutes of higher learning and training providers.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE
1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as “Mature Standards”. Mature Standards will not be subject to further review, unless there are requests to review such standards.

2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.

3. Compliance with a SS or TR does not exempt users from any legal obligations.
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62264-4 has been prepared by subcommittee 65E: Devices and integration in enterprise systems, of IEC technical committee 65: Industrial-process measurement, control and automation.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>65E/479/FDIS</td>
<td>65E/488/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts in the IEC 62264 series, published under the general title *Enterprise-control system integration*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

**IMPORTANT –** The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

This part of IEC 62264 defines the interfaces between enterprise activities and control activities and is to be used in conjunction with IEC 62264-3.

The scope of this part of IEC 62264 is limited to defining the details of the information content of interfaces within manufacturing operations management. The scope is limited to the definition of object models and attributes for the information defined in IEC 62264-3. The goal is to reduce the effort, cost, and errors associated with implementing these interfaces.

The standard may be used to reduce the effort associated with implementing new product offerings. The goal is to have enterprise systems and control systems that interoperate and easily integrate.

This part of IEC 62264 further defines the object models and attributes involved in data exchange between activities of manufacturing operations management defined in 62264-3. The models and terminology defined in IEC 62264-3 and this part of IEC 6226

a) emphasize good manufacturing operations management integration practices during the entire life cycle of the systems;

b) can be used to improve existing integration capability of manufacturing operations management systems; and

c) can be applied regardless of the degree of automation.

Specifically, IEC 62264-3 and this part of IEC 62264 provide a standard terminology and a consistent set of concepts and models for integrating manufacturing operations management systems that will improve communications between all parties involved. Benefits produced will

d) reduce the user's time to reach full production levels for new products;

e) enable vendors to supply appropriate tools for implementing integration of manufacturing operations management systems;

f) enable users to better identify their needs;

g) reduce the cost of automating manufacturing processes;

h) optimize supply chains; and

i) reduce life-cycle engineering efforts.

IEC 62264-3 and this part of IEC 62264 may be used to reduce the effort associated with implementing new product offerings. The goal is to have manufacturing operations management systems that interoperate and easily integrate.

It is not the intent of the standards to

1) suggest that there is only one way of implementing integration of manufacturing operations management systems;

2) force users to abandon their current way of handling integration; or

3) restrict development in the area of integration of manufacturing operations management systems.
1 Scope

This part defines object models and attributes exchanged between Level 3 manufacturing operations management activities defined in IEC 62264-3.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62264-1:2013, Enterprise-control system integration – Part 1: Models and terminology

IEC 62264-2:2013, Enterprise-control system integration – Part 2: Object and attributes for enterprise-control system integration

IEC 62264-3, Enterprise-control system integration – Part 3: Activity models of manufacturing operations management

IEC 61512-1, Batch control – Part 1: Models and terminology

IEC 61512-4:2009, Batch control – Part 4: Batch production records

IEC 62682, Management of alarm systems for the process industries

ISO/IEC 19501, Information technology – Open Distributed Processing – Unified Modelling Language (UML) Version 1.4.2


ISO 8601, Data elements and interchange formats – Information interchange – Representation of dates and times