TR 70: 2019 (ICS 25.030)

TECHNICAL REFERENCE

Guidelines on the selection criteria for metal additive manufacturing processes

(ICS 25.030)

TECHNICAL REFERENCE

Guidelines on the selection criteria for metal additive manufacturing processes

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Technical Reference may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© Enterprise Singapore 2019

ISBN 978-981-48-3598-5

The content of this Technical Reference was approved on 9 September 2019 by the Manufacturing Standards Committee (MSC) under the purview of the Singapore Standards Council.

First published, 2019

MSC consists of the following members:

		Name	Representation	
Chairman	:	Dr John Yong	Individual Capacity	
Deputy Chairman	:	Mr Brandon Lee	Individual Capacity	
Secretary : Mr Lee Wei Guo		Mr Lee Wei Guo	Singapore Manufacturing Federation – Standards Development Organisation	
Members	:	Dr Karen Chong Ms Fong Pin Fen Mr Goh Wee Hong Mr Ho Chi Bao Mr Steven Koh	Science Engineering Research Council Economic Development Board TÜV SÜD PSB Pte Ltd Enterprise Singapore Singapore Precision Engineering Technology Association	
		Ms Lee Wan Sie Dr Jim Li Hui Hong Dr Lim Ee Meng Er. Prof Seeram Ramakrishna Mr Sze Thiam Siong	Infocomm Media Development Authority Individual Capacity National Metrology Centre The Institution of Engineers, Singapore Setsco Services Pte Ltd	

MSC sets up the Technical Committee on Additive Manufacturing to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Representation
Co- Chairmen	:	Prof Leong Kah Fai	Individual Capacity
		Mr Matthew Waterhouse	Individual Capacity
Secretary	:	Mr Lee Wei Guo	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Mr Chong Chee Ter	SLM Solutions Group AG
		Prof Jerry Fuh	National University of Singapore
		Dr Ho Chaw Sing / Mr Marc Lee Sien Wee	National Additive Manufacturing Innovation Cluster
		Dr Samyeon Kim	Singapore University of Technology and Design
		Mr Ko Hyun Woong	National Institute of Standards and Technology
		Dr Alexander Liu	Temasek Polytechnic
		Mr George Loh	National Research Foundation Singapore
		Mr Sean Looi	Creatz3D Pte Ltd
		Mr Lu Xiao Hui	Makino Asia Pte Ltd

Members	:	Dr Gary Ng	Advanced Remanufacturing and Technology Centre
		Prof David Rosen	Singapore University of Technology and Design
		Mr Sastry Yagnanna Kandukuri	DNV GL Singapore
		Ms Jen Soh	Enterprise Singapore
		Dr Su Liap Tat	Singapore Polytechnic
		Mr Desmond Tan	Nanyang Polytechnic
		ME6 Kaiser Tan	Singapore Armed Forces
		Mr Toh Tee Peng	Singapore Technologies Engineering Ltd
		Dr Wei Jun	Singapore Institute of Manufacturing Technology
		Mr Wu Wen Jin	Keppel Technology and Innovation
		Mr Wu Yong Lin	Singapore Precision Engineering and Technology Association
		Dr Xu Baoxi	National Metrology Centre
		Dr Zheng Guoying	Singapore Technologies Engineering Ltd
		Mr Michael Zimmerman	Flowserve Corporation
		Mr Kelvin Zin	Economic Development Board
Co-opted Member	:	Mr Jeffrey Loy	Individual Capacity

The Technical Committee sets up the Working Group on Military Additive Manufacturing to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

		Name
Co-Convenors	:	Dr Ho Chaw Sing
		Mr Ng Keok Boon
		ME7 Tan Mu Yen
Co-Secretaries	:	Ms Rachel Ho
		ME4 Yip Yi Hong
Members	:	ME5 Ang Lay Fang
		ME5 Terence Chang
		Prof Jerry Fuh
		Mr Sastry Yagnanna Kandukuri
		Mr Khong Chee Houe
		Dr Samyeon Kim
		ME6 Lau Tuck Foo
		ME4 Lim Jun Jett
		Dr Alexander Liu
		Mr Kelvin Loke

Members:Mr Sean LooiProf Ng Bing FengDr Khalid RafiDr Khalid RafiProf David RosenMr Sze Thiam SiongMr Tan Boon HongME6 Kaiser TanME5 Tay Wei JieMr Andrew TeoMr Matthew WaterhouseMr Wu Yong LinDr Xu Baoxi

The organisations in which the experts of the Working Group are involved are:

3D Metalforge Pte Ltd Creatz3D Pte Ltd DNV GL Singapore Nanyang Technological University National Metrology Centre National University of Singapore Setsco Services Pte Ltd Singapore Armed Forces Singapore Centre for 3D Printing Singapore Precision Engineering and Technology Association Singapore Test Services Pte Ltd Singapore University of Technology and Design ST Engineering Land Systems Ltd ST Logistics Pte Ltd Temasek Polytechnic UL International Singapore Pte Ltd

Contents

Page

Forewo	Foreword		
1	Scope	8	
2	Normative references	8	
3	Terms and definitions	8	
4	Abbreviated terms	9	
5	Comparison between CM and AM processes	9	
6	Framework for manufacturing process selection	15	
7	Design suitability for AM process	18	
8	Selection of AM material and process alternatives	23	
9	AM process feasibility from the business perspective and AM process selection	28	
10	Design for AM: benefit and examples	32	

Annex

A	Example of process selection	35

Tables

1	General differences between CM and AM	10
2	Advantages and disadvantages of CM (sand casting and CNC machining) and AM (PBF-M and DED)	_ 12
3	Comparison of manufacturing processes based on redesign purpose using AM	14
4	Common metal materials for metal PBF-M	25
5	Comparison of CNC machining, metal PBF-M and DED	27
6	Recommended manufacturing process according to the number of parts	31
A.1	Formulation of the selection decision support problem	36
A.2	Relative importance through the ranking method	36
A.3	Rating process alternatives with respect to attributes	37
A.4	Normalised value of attributes	37
A.5	Rankings of process alternatives	38

Figures

1	General framework of process selection	16
2	A procedure for design suitability check	21
3	A chart for part and process selections based on design complexity and production volume after design feasibility check	22
4	A chart for process selection based on the relationships between manufacturing cost and design complexity	22

5	A selection procedure for material and AM process alternatives	24	
6	A procedure of business analysis and final AM process selection	29	
7	Cost comparison according to the number of parts	31	
8	Metal printed joint with lattice structure	32	
9	Conformal cooling channel of injection moulding	33	
10	Schematic of gradient alloy specimen	34	
A.1	An example of an aircraft jet engine bracket	36	
Biblio	Bibliography 39		

Foreword

This Technical Reference (TR) was prepared by the Working Group on Military Additive Manufacturing set up by the Technical Committee on Additive Manufacturing under the purview of MSC.

This TR is a provisional standard made available for application over a period of three years. The aim is to use the experience gained to update the TR so that it can be adopted as a Singapore Standard. Users of the TR are invited to provide feedback on its technical content, clarity and ease of use. Feedback can be submitted using the form provided in the TR. At the end of the three years, the TR will be reviewed, taking into account any feedback or other considerations, to further its development into a Singapore Standard if found suitable.

This TR is expected to be used by AM design engineers, manufacturing engineers, maintenance engineers, industry associations, research institutions and government agencies.

Acknowledgement is made to the following organisations for their kind permission to reproduce their materials into this TR:

- 3D Hubs [Table 4,5,6 and Figure 7] <u>https://www.3dhubs.com/guides/cnc-machining/#basics</u>
- ISO/ASTM 52900/52921 [Terms and definitions] <u>https://www.iso.org/committee/629086.html</u>
- Singapore University of Technology and Design [Figure 8] https://www.sutd.edu.sg/
- Thales Alenia Space [Figure 3]. <u>https://www.thalesgroup.com</u>

Attention is drawn to the possibility that some of the elements of this TR may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

Guidelines on the selection criteria for metal additive manufacturing processes

1 Scope

This Technical Reference (TR) provides guidelines for process selection between conventional manufacturing (CM) and additive manufacturing (AM) involving metals.

It helps to determine the suitability of AM as a manufacturing process on an existing design or new design. In addition, benefits and limitations of manufacturing processes and factors of process selection are illustrated to support the decision-making of the process.

This TR does not include process-specific guidelines and specific material data/design solutions.

2 Normative references

The following referenced documents are referred to in this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document applies.

ISO/ASTM 52900	Additive manufacturing – General principles – Terminology
ISO/ASTM 52901	Additive manufacturing – General principles – Requirements for purchased AM parts
ISO/ASTM 52910	Additive manufacturing – Design – Requirements, guidelines and recommendations
ISO/ASTM 52911-1	Additive manufacturing – Design – Part 1: Laser-based powder bed fusion of metals
ISO/ASTM 52921	Standard terminology for additive manufacturing – Coordinate systems and test methodologies