TR IEC/TR 62837 : 2019 IEC/TR 62837:2013, IDT

(ICS 25.040.40; 27.010)

TECHNICAL REFERENCE Energy efficiency through automation systems

TR IEC/TR 62837 : 2019 IEC/TR 62837:2013, IDT

(ICS 25.040.40; 27.010)

TECHNICAL REFERENCE Energy efficiency through automation systems

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Technical Reference may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© IEC 2013 – All rights reserved © Enterprise Singapore 2019

ISBN 978-981-48-9444-9

The content of this Technical Reference was approved on 17 October 2019 by the Manufacturing Standards Committee (MSC) under the purview of the Singapore Standards Council.

First published, 2019

MSC consists of the following members:

		Name	Representation
Chairman	:	Dr John Yong	Individual Capacity
Deputy Chairman	:	Mr Brandon Lee	Individual Capacity
Secretary	:	Mr Lee Wei Guo	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Dr Karen Chong Ms Fong Pin Fen Mr Goh Wee Hong Mr Ho Chi Roc	Science Engineering Research Council Economic Development Board TÜV SÜD PSB Pte Ltd Enternrice Singapore
		Mr Steven Koh	Singapore Precision Engineering Technology Association
		Ms Lee Wan Sie	Infocomm Media Development Authority
		Dr Jim Li Hui Hong	Individual Capacity
		Dr Lim Ee Meng	National Metrology Centre
		Er. Prof Seeram Ramakrishna	The Institution of Engineers, Singapore
		Mr Sze Thiam Siong	Setsco Services Pte Ltd

MSC sets up the Technical Committee on Smart Manufacturing to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Representation
Co-Chairmen	:	Mr Yeoh Pit Wee Dr Tan Puay Siew	Individual Capacity Individual Capacity
Secretary	:	Mr Louis Lauw	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Mr Ang Wee Seng Dr Ian Chan Hian Leng Mr Cheong Siah Chong Mr David Chia Dr Andreas Hauser Mr Sunny Khoo Mr Brandon Lee Prof Lee Loo Hay Mr Zach Lee Mr Gerry Ong Prof John Pang	Singapore Semiconductor Industry Association Singapore Institute of Manufacturing Technology Singapore Industrial Automation Association Beckhoff Automation Pte Ltd TÜV SÜD Asia Pacific Pte Ltd Toshiba TEC Singapore Pte Ltd Singapore Manufacturing Federation National University of Singapore Siemens Industry Software Pte Ltd SMT Technology Pte Ltd Nanyang Technological University

Members	:	Er. Prof Seeram Ramakrishna	The Institution of Engineers, Singapore
		Mr Sim Bak Chor	Infocomm Media Development Authority
		Mr Tian Boon Quey	TRUMPF Pte Ltd
		Mr Toh Hong Wee	PBA Systems Pte Ltd
		Dr Carlos Toro	Advanced Remanufacturing Technology Centre

The Technical Committee sets up the Working Group on Smart Manufacturing Readiness Level to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

		Name
Co-Convenors	:	Mr Brandon Lee
		Mr Shridhar Ravikumar
Secretary	:	Mr Louis Lauw
Members	:	Dr Ian Chan Hian Leng
		Mr Cheong Siah Chong
		Mr David Chia
		Dr Andreas Hauser
		Mr Michael Leong
		Dr Lin Wei
		Dr Gary Ng
		Prof John Pang
		Dr Tan Puay Siew
		Mr Yeoh Pit Wee

The organisations in which the experts of the Working Group are involved are:

Advanced Remanufacturing Technology Centre Beckhoff Automation Pte Ltd INTECH Process Automation Pte Ltd Nanyang Technological University Rockwell Automation Southeast Asia Pte Ltd SESTO Robotics Pte Ltd Singapore Industrial Automation Association Singapore Institute of Manufacturing Technology TÜV SÜD Asia Pacific Pte Ltd

(blank page)

4 COPYRIGHT

CONTENTS

ΝΑΤ	FIONAL F	OREWORI	D	9
FOF	REWORD)		10
INT	RODUCT	-ION		12
1	Scope .			13
2	Normati	ve referenc	es	13
3	Terms a	and definitio	ons	13
	3.1	Enerav		13
	3.2	Energy us	e and energy consumption	14
	3.3	Energy eff	ficiency	15
	3.4	Energy pe	rformance	16
	3.5	Energy ma	anagement	17
	3.6	Automatio	n process equipment	17
	3.7	Automatio	n system	18
4	Abbrevi	ations and a	alphabetical index	19
	4.1	Abbreviate	ed terms	19
	4.2	Alphabetic	cal index of terms	19
5	Generic	models		21
	5.1	Functional	I hierarchy of production systems	21
	5.2	Functions	in level 4	23
	5.3	Functions	in level 3 or lower	23
	5.4	Application	n function and automation function	23
6	Generic	tools and r	nethods	26
	6.1	Organisati	ional issues	26
	6.2	Energy ma	anaged unit (EMU)	26
	6.3	General re	ecommendations	27
		6.3.1	Architecture of energy sourcing	27
		6.3.2	Managed energy efficiency	27
		6.3.3	Low power states	28
		6.3.4	Standardised component interface	28
		6.3.5	Control systems	29
		6.3.6	Classification and energy labels for components and systems	29
		6.3.7	Simulation of systems and components	29
	6.4	Key perfor	rmance indicators (KPIs) for energy efficiency	30
		6.4.1	Basics for defining KPIs for energy efficiency	30
		6.4.2	Recommendations for defining KPIs for energy efficiency	33
		6.4.3	Guidelines for defining KPIs	34
7	Applicat	ions		41
	7.1	The applic	cation point of view	41
		7.1.1	Energy consumption in industry	41
		7.1.2	Characteristics of production processes	43
	7.2	Discrete m	nanufacturing	43
		7.2.1	Description	43
		7.2.2	Recommendations for discrete manufacturing	45

	7.3	Process in	dustry	.46
		7.3.1	Description	.46
		7.3.2	General recommendations for the process industry	.47
		7.3.3	Existing standards	.48
		7.3.4	Gaps	.48
		7.3.5	Specific recommendations	.48
	7.4	Support fu	nctions	.49
		7.4.1	General	.49
		7.4.2	Building automation and facility management	.49
8	Compon	ents		.49
	8.1	The compo	onent specific view	.49
	8.2	Actuators.	•	. 50
		8.2.1	Electrical drives: regulate or self-learn optimal energy efficiency.	. 50
		8.2.2	Electrical drives: standardised intermediate current link	. 50
Anne	ex A (info	ormative) S	System boundary	. 51
Anne	ex B (info	ormative) (Current approaches for KPIs for energy efficiency	. 54
	R 1	Existing Kl	Ple	54
	B.2	KPIs for co	omponents	54
	B.3	KPIs for n	roducts	. 54 54
	B.4	KPIs for sy	vstems	55
	B 5	Target valu	ues of KPI by industry sectors in Janan	55
	B.6	How to me	easure the energy consumed to produce a product	57
Ann	ex C. (info	ormative) F	Energy baseline model	59
/		Guidolinos	for the creation and usage of an energy baseline model	50
	0.1	Evamplas	of a facility operation and usage of all energy baseline model	. 59
	0.2			.00. 60
		0.2.1	Cooling water nump with parallel numping control	.00. 60
		0.2.2	Cooling water pumps with variable frequency AC drive	.00
Δnn	ev D (inf	0.2.0 ormative) F	Energy labels	.01
				. 00
	D.1	Examples	of energy labels	. 63
A	D.Z	Energy lad	DENKEL" control	.03
Anne		ormative)		. 64
	E.1	Backgroun	id of "RENKEI" control	.64
	E.2	"RENKEI"	control	. 64
Anno	ex F (info improve	ment	Aeasurement and control technologies that support energy efficien	су .67
	F.1	Technolog	ies to improve energy efficiency	. 67
	F.2	Detection	of air leakage	. 67
	F.3	Control va	lves	. 68
	F.4	Control loc	op performance improvements	. 69
	F.5	Combustic	on control	.70
	F.6	Advanced	process control (APC)	.71
	F.7	Air supply	pressure control	.73
	F.8	Steam hea	ader pressure control	.73
	F.9	Optimal op	perational planning system	.74

F.10 Analytical sensors	75
Bibliography	77
Figure 1 – Functional hierarchy of production systems according to IEC 62264	22
Figure 2 – Energy functions mapped over the functional hierarchy levels (IEC 62264)	22
Figure 3 – Structural overview of automated industrial plants	24
Figure 4 – Plant application with automation assets	25
Figure 5 – Energy managed unit (EMU)	26
Figure 6 – Start up phase of a system and its power consumption	30
Figure 7 – Creation of an energy baseline model	31
Figure 8 – Measurement of energy savings	31
Figure 9 – KPI and its driving factor	33
Figure 10 – Characteristics of the energy baseline model	36
Figure 11 – Production system hierarchy	37
Figure 12 – Energy consumption characteristics of equipment	38
Figure 13 – Model of automotive production	44
Figure 14 – Supervisory control	46
Figure A.1 – Unit process model	51
Figure A.2 – Unit process model dealing with the direct and indirect influences	52
Figure A.3 – Process units in the definition and context of plants	52
Figure A.4 – Typical expanded equipment hierarchy	53
Figure B.1 – Product production process	58
Figure B.2 – Production process flow	58
Figure C.1 – Energy baseline model	59
Figure C.2 – Cooling water pump facility with parallel pumping control	61
Figure C.3 – Cooling water pumps with variable frequency AC drive	62
Figure D.1 – Examples of energy labels	63
Figure E.1 – "RENKEI" control	65
Figure E.2 – "RENKEI" control detail	66
Figure E.3 – Energy flow in a factory	66
Figure F.1 – Components and automation functions	67
Figure F.2 – Pipe air leaks	68
Figure F.3 – Structure of control valve	69
Figure F.4 – Control loop performance improvements	69
Figure F.5 – The effects of control performance analysis and tuning	70
Figure F.6 – Relationship between air-fuel ratio and heat efficiency (combustion)	70
Figure F.7 – CO and O ₂ control system for combustion furnace	71
Figure F.8 – APC	72
Figure F.9 – Example of APC application for distillation column	73
7	

Figure F.10 – Air supply pressure control by pressure transmitter and compressor7	73
Figure F.11 – Control of steam header pressure by means of compressor quantity control .7	74
Figure F.12 – Optimal operational planning system7	75
Figure F.13 – Coal gasification plant7	76
Table 1 – Guideline for EMU energy data3	32
Table 2 – Guideline to define KPIs for EMU3	39
Table 3 – Guideline for the definition of KPIs for products4	10
Table 4 – KPI description based on ISO 22400-2 model4	11
Table 5 – Characteristics of production processes 4	13
Table B.1 – Target values of KPI by industry sectors in Japan5	56
Table C.1 – Guidelines for defining an energy baseline model6	30
Table F.1 – Pipe air leaks detected by ultrasonic sensing device6	38

National Foreword

This Technical Reference (TR) was prepared by the Working Group on Smart Manufacturing Readiness Level set up by the Technical Committee on Smart Manufacturing under the purview of MSC.

This TR is identical with IEC/TR 62837:2013, "Energy efficiency through automation systems", published by the International Electrotechnical Commission.

NOTE 1 – Where appropriate, the words "Technical Report" are read as "Technical Reference".

NOTE 2 – Reference to International Standards are replaced by applicable Singapore Standards and Technical References.

NOTE 3 - Where numerical values are expressed as decimals, the comma is read as a full point.

This TR is a provisional standard made available for application over a period of three years. The aim is to use the experience gained to update the TR so that it can be adopted as a Singapore Standard. Users of the TR are invited to provide feedback on its technical content, clarity and ease of use. Feedback can be submitted using the form provided in the TR. At the end of the three years, the TR will be reviewed, taking into account any feedback or other considerations, to further its development into a Singapore Standard if found suitable.

This TR is expected to be used by system integrators, government agencies, testing, inspection and certification bodies, professional institutions, institutes of higher learning and training providers.

Attention is drawn to the possibility that some of the elements of this Technical Reference may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature Standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ENERGY EFFICIENCY THROUGH AUTOMATION SYSTEMS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 62837, which is a technical report, has been prepared by IEC technical committee 65: Industrial-process measurement, control and automation.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
65/513/DTR	65/517/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

Energy efficiency has received an ever growing attention worldwide since it is considered a major lever to help secure a sustainable society in view of climate change, growing population and security of supply [1]¹. Additionally the sustainability and conservation of resources need to be considered. Automation is the enabler of measures, solutions and systems for demand/response and energy efficiency. In the context of this TR we will only consider energy efficiency. IEC and ISO have both identified energy efficiency as one of their main areas of activity.

The current focus of the Standard Development Organisations (SDO) is harmonised terminology, calculation methods, indicators, energy management systems and standards for assessment and ratings (e.g. for buildings and industrial plants). For this purpose IEC SMB Decision 128/20 "New initiatives for IEC" work endorsed the SMB Strategic Group 1 on Energy Efficiency and Renewable Energy. This strategic group has since then developed 34 recommendations for future work in different domains. The three following recommendations cover the area of automation:

- Recommendation #7: IEC/TC 2, SC 22G and TC 65 together with ISO/TC 184 should develop guidelines for the design and operation of energy efficient systems in the field of industrial automation and industrial process control from a system point of view.
- Recommendation #27: In order to support the optimisation of automation and production
 processes already during the planning phase of production systems, SG1 recommends that
 all relevant product TC/SC include key data in their components/devices standards that are
 vital for a priori simulation of the component/device behaviour in an intended production
 system, as such simulation leads to optimised processes from an energy efficiency
 perspective.
- Recommendation #28: In order to support the optimisation of automation and production processes already during the planning phase of production systems, SG1 recommends that TC 65 and its SCs consider the development of simulation tools from a system point of view, to allow a priori optimisation of automation and production processes on the factory floor in terms of energy efficiency.

In line with the recommendation #7, a workshop organized by the quoted committees and by SC 17B reached the consensus to create JWG 14, settled in TC 65, to cover the objectives and perform the tasks specified in the above mentioned recommendations. This document identifies a number of technology areas in the scope of various technical committees that need standardisation.

¹ Numbers in square brackets refer to the Bibliography.

ENERGY EFFICIENCY THROUGH AUTOMATION SYSTEMS

1 Scope

This Technical Report provides to the technical committees a framework for the development and adaptation of documents in order to improve energy efficiency in manufacturing, process control and industrial facility management.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62264 (all parts), Enterprise-control system integration

IEC 62264-1:2013, Enterprise-control system integration – Part 1: Models and terminology

ISO 20140-1:2013, Automation systems and integration – Evaluating energy efficiency and other factors of manufacturing systems that influence the environment – Part 1: Overview and general principles

ISO 22400-2, Automation systems and integration – Key performance indicators for manufacturing operations management – Part 2: Definitions and descriptions²