

SINGAPORE STANDARD Code of practice for bunker mass flow metering

(ICS 01.140.30; 47.020)

SINGAPORE STANDARD Code of practice for bunker mass flow metering

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© Enterprise Singapore 2019

ISBN 978-981-48-9451-7

The content of this Singapore Standard was approved on 23 September 2019 by the Chemical Standards Committee (CSC) under the purview of the Singapore Standards Council.

First published, 2019

CSC consists of the following members:

		Name	Representation
Chairman	:	Dr Keith Carpenter	Individual Capacity
Deputy Chairman	:	Er. Lucas Ng	Individual Capacity
Secretaries	:	Ms Elane Ng	Standards Development Organisation @ Singapore Chemical Industry Council
		Ms Rosmalinda Tay	Standards Development Organisation @ Singapore Chemical Industry Council
Members	:	Mr Goh Tiak Boon	Individual Capacity
		Prof Alfred Huan	Individual Capacity
		Mr Khong Beng Wee	Individual Capacity
		Mr Terence Koh	Singapore Chemical Industry Council Limited
		Dr Leong Kwai Yin	Individual Capacity
		Dr Thomas Liew	National Metrology Centre
		Mr Lim Eng Kiat	Individual Capacity
		Mdm Jaime Lim	Ministry of Manpower
		Mr Lim Kian Chye / Mr Ng	
		Eng Fu	Housing & Development Board
		Prof Loh Kian Ping	National University of Singapore
		Dr Loh Wah Sing	Individual Capacity
		Ms Pamela Phua	Singapore Paint Industry Association
		Mr Seah Khen Hee	Individual Capacity
		A/Prof Timothy Tan	Nanyang Technological University
		Dr Teo Tang Lin	Chemical Metrology Division, Health Sciences Authority
		Mr Yao Yikai	Maritime and Port Authority of Singapore
		Ms Suzanna Yap	National Environment Agency
Co-opted		Ma Christing Lab	Individual Consolts
wempers	•		Individual Capacity
		IVIT PILL KWAN WAN	individual Capacity

CSC sets up the Technical Committee on Bunkering to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Representation
Chairman	:	Mr Seah Khen Hee	Individual Capacity
Deputy Chairman	:	Mr Lee Wai Pong	Individual Capacity
Secretary	:	Ms Elane Ng	Standards Development Organisation @Singapore Chemical Industry Council
Members	:	Ms Maite Bolivar Klarup Mr Dennis Chan	Baltic and International Maritime Council Singapore Chamber of Maritime Arbitration
		Mr Chew Siu Keong / Mr Loh Yuanhe	Maritime and Port Authority of Singapore
		Capt. Rahul Choudhuri	Veritas Petroleum Services (Asia) Pte Ltd
		Mr Timothy Cosulich	International Bunker Industry Association (Asia) Ltd
		Mr Darajit Daud	SGS Testing & Control Services Singapore Pte Ltd
		Mr Md Elfian Harun	The International Association of Independent Tanker Owners
		Mr Kenneth Kee	Society of Naval Architects and Marine Engineers Singapore
		Ms Samantha Leow	ExxonMobil Asia Pacific Pte Ltd
		Capt. Say Eng Sin	Singapore Nautical Institute
		Mr Roger Tan	Shell Eastern Trading Pte Ltd
		Mr Thiang Cheong Sheng	Singapore Shipping Association
		Mr Wu Jian	National Metrology Centre
		Ms Caroline Yang	Singapore Shipping Association
Co-opted Members	:	Mr Desmond Chong	Individual Capacity
		Mr Simon Neo	Individual Capacity
		Mr Darrick Pang	Individual Capacity
		Capt. Yoon Peng Kwan	Individual Capacity

The Technical Committee sets up Working Group on Mass Flow Metering to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

Name		
Co-Convenors :	Capt. Yoon Peng Kwan Mr Alan Lim*	
Members :	Mr Mohamed Abdenbi Mr Peter Beekhuis Mr Mathews George	
	Mr Naveen Hegde Mr Dennis Ho Mr Jens Maul Jorgensen Mr Sherman Lee Ms Samantha Leow	

Members : Mr Lim Yong Seng Mr Jony Ling* Mr Loh Yuanhe Mr Bhavin Mehta Capt. Hoque Mominul Mr Simon Neo Mr Darrick Pang Mr Dennis Sim Mr Roger Tan Mr Thiang Cheong Sheng Mr Wu Jian Mr Andrew Yap* Ms Celeste Yeong

*Served till May 2019.

The organisations in which the experts of the Working Group are involved are:

Emerson Process Management Marine Solutions Singapore Pte Ltd Endress+Hauser (S.E.A.) Pte Ltd Enterprise Singapore ExxonMobil Asia Pacific Pte Ltd Krohne (South East Asia) Pte Ltd Maersk Oil Trading Singapore Pte Ltd Maritec Pte Ltd Maritime and Port Authority of Singapore Metcore International Pte Ltd National Metrology Centre Ocean Tankers Pte Ltd Oldendorff Carriers GmbH & Co. Pacific International Lines Pte Ltd Peninsula Petroleum Limited Piroj International Pte Ltd Sentek Marine & Trading Pte Ltd SGS Testing & Control Services Singapore Pte Ltd Shell International Eastern Trading Company Sinanju Tankers Pte Ltd Veritas Petroleum Services (Asia) Pte Ltd

Contents

Forewo	rd	7
0	Introduction	9
1	Scope	9
2	Normative references	10
3	Terms and definitions	10
4	Abbreviations	17
5	General requirements (safety, health and the environment)	17
6	Metrological requirements	17
7	System integrity requirements	20
8	Meter selection and installation requirements	23
9	Acceptance test requirements	25
10	Metering procedures	25

Annexes

А	Safety, health and the environment (normative)	38
В	Zero verification procedures (normative)	42
С	Metrological and system integrity requirements (normative)	43
D	Example of ancillary device sealing (informative)	44
Е	Sealable bolts and nuts for blanks and flanges (normative)	45
F	Request for information checklist (informative)	46
G	Typical schematic diagram of MFM system (for delivery) (informative)	48
Н	Markings on stamping plate of mass flow meter (informative)	49
I	Acceptance test requirements (normative)	50
J	8-step approval process (normative)	54
K	Example of a test plan (informative)	55
L	Competency and responsibility of test team members (normative)	58
М	Schematic description of an example of acceptance test (informative)	59
Ν	MFM system acceptance test records (normative)	62
0	Example of bunker requisition form (mass flow metering) (informative)	70
Ρ	Example of mass flow metering system seals checklist (informative)	71
Q	Example of meter reading record form (delivery) (informative)	72
R	Bunker delivery note (BDN) (normative)	73
S	Example of bunker metering ticket (informative)	74
Т	Example of a survey time log (informative)	75

Page

U	Example of a statement of fact (informative)	76
V	Bunkering pre-delivery safety checklist (informative)	77
W	Sampling (normative)	79
Х	Example of a sample label (informative)	
Y	Responsibilities of bunker surveyor (normative)	85
Z	Example of meter totaliser log (informative)	
AA	Examples of note of protest (informative)	
AB	Mass flow metering bunker claims (MFMBC) procedure (informative)	
AC	Resolution of disputes (informative)	91
AD	Singapore bunker claims procedure (SBC terms) (informative)	92
AE	Schematic diagrams of multi meter set up (informative)	97

Tables

1	Uncertainty budget table	19
2	Size of reducers and adaptors	34
l.1	Representative samples	52

Figures

1	Application of MFM bunkering requirements	9
A.1	Examples of hand signals for bunkering communication	39
D.1	Example of sealed pressure transmitter (instrument)	44
E.1	Sealable bolt and nut	45
E.2	Example of sealed pipe blank	45
W.1	Design of sampling equipment	81
W.2	Example of design of sample bottle neck and cap	82
AE.1	Example of a two MFMs installed in parallel (for same grade of bunker fuel)	97
AE.2	Example of a two MFMs installed separately (for different grade of bunker fuel)	98
Bibliogr	aphy	99

Foreword

This Singapore Standard was prepared by the Working Group on Mass Flow Metering set up by the Technical Committee on Bunkering under the purview of the Chemical Standards Committee.

This standard was first developed as TR 48 : 2015, "Technical Reference for bunker mass flow metering". TR 48 was reviewed to further its development into a Singapore Standard.

The changes resulting from the review are as follows:

- Expanded the scope of the standard to cover 2020 compliant fuels such as distillate fuels;
- Included multi meter installation;
- Enhanced zero verification procedure;
- Provided better clarity on the role of bunker surveyors.

In preparing this standard, reference was made to the following publications:

American Petroleum Institute Manual of Petroleum Measurement Standards

API MPMS 5.6:2002(2008) Measurement of liquid hydrocarbons by Coriolis meters

American Society of Mechanical Engineers

ASME MFC-11:2006 (R2014) Measurement of fluid flow by means of Coriolis mass flow meters

International Organization for Standardization

ISO 10790:2015	Measurement of fluid flow in closed conduits – Guidance to the selection, installation and use of Coriolis flowmeters (mass flow, density and volume flow measurements)
ISO/IEC 17025:2017	General requirements for the competence of testing and calibration laboratories

Bureau International des Poids et Mesures

Joint Committee for Guides in	International vocabulary of metrology – Basic and general
Metrology JCGM 200:2012	concepts and associated terms (VIM) 3 rd Edition

International Organization of Legal Metrology

OIML D028:2004 Conventional value of the result of weighing in air Reproduction of content from OIML D028: 2004 complies with OIML B11 - "Rules governing the translation, copyright and distribution of OIML Publications"

Some of the definitions in Clause 3 were reproduced from the above publications with permission from the respective organisations as indicated in brackets after the definitions. All rights are reserved by the organisations.

Acknowledgement is made for the use of information from the above publications.

This standard is expected to be used by vendors of Coriolis mass flow meters, bunker suppliers, bunker surveyors, bunker tanker operators, shipowners/buyers and the implementing authority.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all such patent rights.

NOTE

- Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

Code of practice for bunker mass flow metering

0 Introduction

This Singapore Standard was developed for the benefit of the bunker industry in Singapore comprising shipowners, operators, charterers, bunker suppliers, bunker craft operators and bunker surveyors. It is intended to enhance the efficiency of bunkering operations and promote best practices in the measurement of bunker fuel delivered.

The purpose of this standard is to document principles, requirements and procedures in the application of mass flow metering to the bunker custody transfer process in Singapore.

This standard does not alter the contractual obligations of the parties involved in the bunker delivery.

1 Scope

This Singapore Standard covers the requirements of bunker quantity measurement using Coriolis mass flow meter (MFM) system. The requirements include metering system qualification, installation, testing, procedures and documentation for bunker custody transfer. Sampling process of bunkering is also covered in this standard.

Figure 1 shows the application of MFM bunkering requirements for bunker custody transfer.

Figure 1 – Application of MFM bunkering requirements

2 Normative references

The following referenced documents are indispensable for the application of this standard. For undated references, the latest edition of the referenced document (including any amendments) applies, unless otherwise stated by the implementing authority.

International Recommendation OIML R117	Dynamic measuring systems for liquids other than water
ISO 3104	Petroleum products –Transparent and opaque liquids – Determination of kinematic viscosity and calculation of dynamic viscosity
ISO 3675	Crude petroleum and liquid petroleum products – Laboratory determination of density – Hydrometer method
ISO 8217	Petroleum products – Fuels (class F) – Specifications of marine fuels
ISO 12185	Crude petroleum and petroleum products – Determination of density – Oscillating U-tube method
ISO/IEC 17020	Conformity assessment – Requirements for the operation of various types of bodies performing inspection
ISO/IEC 17025	General requirements for the competence of testing and calibration laboratories
Joint Committee for Guides in Metrology JCGM 100 GUM	Evaluation of measurement data – Guide to the expression of uncertainty in measurement
SS 600	Code of practice for bunkering