

SINGAPORE STANDARD Code of practice for automatic fire sprinkler system

Incorporating Erratum No. 1

Published by

CP 52 : 2004 (ICS 13.220.20)

SINGAPORE STANDARD Code of practice for automatic fire sprinkler system

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

This Singapore Standard was approved by the Building and Construction Standards Committee on behalf of the Standards Council of Singapore on 5 November 2004.

First published, 1990 Second revision, 2004

The Building and Construction Standards Committee appointed by the Standards Council consists of the following members:

		Name	Capacity
Chairman	:	Mr Goh Peng Thong	Member, Standards Council
1 st Deputy Chairman	:	Dr Tam Chat Tim	Member, Standards Council
2 nd Deputy Chairman	:	Mr Tan Tian Chong	Member, Standards Council
Secretary 1	:	Mr Kenneth Lim See Khoon	SPRING Singapore
Secretary 2	:	Ms Lee Hiok Hoong	SPRING Singapore
Members	:	Mr Boo Geok Kwang	Singapore Civil Defence Force / Fire Safety and Shelter Department
		Mr Chan Kok Way	Individual Capacity
		Dr Jimmy Chen Wie Ying	Individual Capacity
		Mr Chin Jen Chyi	Building and Construction Authority
		Mr Chong Kee Sen	Institution of Engineers, Singapore
		Mr Desmond Hill	Singapore Contractors Association Limited
		Mr Joseph Lai Kuong Kiu	JTC Corporation
		Mr Benedict Lee Khee Chong	Singapore Institute of Architects
		Assoc Prof Leong Eng Choon	Nanyang Technological University
		Mr Lim Bok Ngam	Land Transport Authority
		Mr Larry Ng Lye Hock	Urban Redevelopment Authority
		Assoc Prof Gary Ong Khim Chye	National University of Singapore
		Er. See Sing Kok	Singapore Manufacturers' Federation
		Er. Shum Chee Hoong	Housing & Development Board
		Dr Tan Guan	Association of Consulting Engineers, Singapore

The Technical Committee on Building Services appointed by the Building and Construction Standards Committee and responsible for the preparation of this standard consists of representatives from the following organisations:

		Name	Capacity	
Chairman	:	Dr Jimmy Chen Wie Ying	Individual Capacity	
Secretary	:	Mr Kenneth Lim See Khoon	SPRING Singapore	
Members	:	Mr Bok Chee Meng	Building and Construction Authority	
		Prof Bong Tet Yin	ASHRAE, Singapore Chapter	
		Mr Chai Ng Fook	Housing & Development Board	
		Mr Chue Fook Chee	CPG Consultants Pte Ltd	
		Mr Kang Ngek Kong	Energy Market Authority	

Members:	Mr Kuang Kim Yaw	Public Utilities Board
	Mr Simon Lee	Institution of Engineers, Singapore
	Mr Lee Wee Keong	Singapore Civil Defence Force / Fire Safety and Shelter Department
	Mr Lim See Gan	Public Utilities Board
	Mr Lum Yun Kheun	Housing & Development Board
	Assoc Prof Ng Kim Choon	National University of Singapore
	Mr Mel Saiquel	Singapore Contractors Association Limited
	Mr Tay Cher Seng	Institution of Engineers, Singapore
	Mr Wang Chin Chong	Ngee Ann Polytechnic
	Assoc Prof Wong Yew Wah	Nanyang Technological University
	Mr Philip Ying	JTC Corporation

The Working Group appointed by the Technical Committee to assist in the preparation of this standard comprises the following experts who contribute in their *individual capacity*:

		Name	
Convenor	:	Er. Siew Yee Cheong	
Members	:	Mr Albert Lam	
		Mr Leong Cheng Wee	
		Mr Andrew Loh	
		Mr Loke Yee Weng	
		Mr K Ramanathan	
		Mr Tang Kian Cheong	
		Mr Tay Teck Kiang	
		Ms Yeow Mei Ling	
		Mr Yong Yit Lee	

The experts of the Working Group are nominated/recommended by the following organisations:

Institution of Engineers, Singapore Public Utilities Board Singapore Civil Defence Force

(blank page)

Page

Contents

Foreword ______ 9

CLAUSES

1	Scope	11
2	Definitions	11
3	Classes of sprinkler system and design data	17
4	Installation	33
5	Water supplies	
6	Spacing and location of sprinklers	
7	Sprinklers, sprayers and multiple controls	79
8	Piping	
9	Valves and ancillary equipment	91
10	Light hazard class systems	100
11	Ordinary hazard class systems	102
12	High hazard class systems	112
13	Full hydraulic calculation of sprinkler systems	128

ANNEXES

А	Orifice plates	172
В	Pipework interpretations	175
С	Maintenance	178

TABLES

1	Maximum floor area for dry pipe systems 28
2	Design densities of discharge and assumed areas of operation for standard sprinkler systems 31
3	Appropriate suction pipe sizes 41
4	Minimum depth of water and width of open channels and weirs for corresponding inflows 43
5	Performance characteristics for automatic pumps drawing from pump suction tanks 48
6	Pressure loss for medium tubes to SS 17 66
7	Value of K for steel tubes to SS 17 66
8	Sprinkler distances from beams and joists 69
9	Distance from sidewall sprinklers to beams 70
10	Sprinkler K factors, orifice and thread sizes 80

Page

11	Colour coding of sprinklers
12	Verification test loads
13	Guide to sizes for pipes and associated components in pumpsets
14	Performance characteristics for automatic pumps drawing from pump suction tanks
15	Pressure/Flow requirements for ordinary hazard class systems
16	Water storage capacity for ordinary hazard class systems
17	Performance characteristics for automatic pumps drawing from pump suction tanks
18	Maximum number of sprinklers on pre-calculated piping
19(A)	Pressure losses for medium tubes to SS 17
19(B)	Pressure losses for medium tubes to SS 17 – Ordinary hazard
20	Discharge density and assumed area of operation for process risks
21(A)	Discharge density and assumed area of operation for high piled storage risks involving free-standing storage or block stacking where ceiling or roof protection is provided
21(B)	Discharge density and assumed area of operation for high piled storage risks involving post or box pallets (in single or double rows) or palletised rack storage where roof or ceiling protection only is provided
22	Discharge density and assumed area of operation at ceiling for bonded stores (spirituous liquors) rack storage
23	Pressure/Flow requirements for high hazard class systems
24	Water storage capacity for high hazard class systems
25(A)	Maximum number of sprinklers on pre-calculated piping for design densities of discharge not exceeding 15 mm/min
25(B)	Maximum number of sprinklers on pre-calculated piping for design densities of discharge not exceeding 15 mm/min
25(C)	Maximum number of sprinklers on pre-calculated piping for design densities of discharge up to 30 mm/min
26	Pressure losses for medium tubes to SS 17
27	Design roughness coefficients
28	Mean internal diameters and values of K for steel tube to AS 1074
29	Mean internal diameters and values of K for steel tube to AS 1432
30	Equivalent pipe lengths for fittings and valves (applicable to Hazen-Williams C value of 120 only)
31	Orifice plates for pipes of sizes 50 and 65 for a flow rate of 500 L/min
32	Orifice plates for pipes of sizes 80, 100, 150 and 200 for a flow rate of 5000 L/min
33	Orifice plate thickness

FIGURES

1	Typical end-centre arrangements	137
2	Typical end-side arrangements	137
3	Typical ordinary hazard class system	138

Page

4	Piping terms used in Figure 7	139
5	Arrangement of supply piping and valves, tall-end freeing solution system	139
6	Symbols used in Figure 7	140
7	Typical water supplies	141
8	Effective capacity of pump suction tanks	143
9	Vortex inhibitors	144
10	Minimum dimensions for supplies from inexhaustible source	145
11	Typical pressure switch test arrangement	146
12	Typical layout for proving water supplies	146
13	Typical flow-measuring devices	147
14	Standard spacing	148
15	Staggered spacing	148
16(a)	Sprinkler distances from beams and joists	149
16(b)	Conventional sprinklers installed upright	149
16(c)	Spray sprinklers (upright and pendent types) and conventional sprinklers installed pendent	150
17	Typical grain elevator	151
18	Bag type dust receiver	152
19	Machines in tiers	152
20	Typical pipe support components	153
21	Typical method of support for long span	155
22	Typical remote test valve	156
23	Intermediate level protection	157
24(a)	Typical bonded stores (spirituous liquors) – double storage rack	159
24(b)	Typical bonded stores (spirituous liquors) – continuous racking	160
25(a)	Typical extra high hazard class system pipe sizes based on Table 25(A)	161
25(b)	Typical extra high hazard class system pipe sizes based on Table 25(B)	162
25(c)	Typical extra high hazard class system pipe sizes based on Table 25(C)	163
26	Determination of area covered per sprinkler	164
27(a)	Typical hydraulically most favourable and most unfavourable areas of operation in a terminal main system with terminal range pipes	165
27(b)	Hydraulic design of most unfavourable area of operation assuming 20 mm/min minimum discharge density over 260 m ²	166
27(c)	Typical hydraulically most favourable and most unfavourable areas of operation in a terminal looped system with terminal range pipes	167
27(d)	Hydraulic design of most unfavourable area of operation assuming 20 mm/min minimum discharge density over 260 m ²	168
27(e)	Typical hydraulically most favourable and most unfavourable areas of operation in a gridded system	169
27(f)	Hydraulic design of most unfavourable area of operation assuming 20 mm/min minimum discharge density of over 260m ²	170

CP 52 : 2004

Page

28	Illustration of installation notice	171
29	Ordinary and extra high hazard – armpieces and risers (or drops)	175
30	Ordinary and extra high hazard – armpieces and risers (or drops)	176
31	Ordinary and extra high hazard – armpieces and risers (or drops)	177

Foreword

This Code of Practice was prepared by the Technical Committee on Building Services under the purview of the Building and Construction Standards Committee (BCSC).

This code is intended to provide good guidance on design, installation, commissioning and maintenance of automatic fire sprinkler systems.

Automatic fire sprinkler systems will not be regarded as complying with these recommendations unless the installation is designed and supervised by professional engineers recognised by the relevant authority as being in this class of work.

In this revision, new clauses were added and existing ones reviewed to bring the code in line with the latest in sprinkler systems concept and technology.

The following main topics were introduced:

- a) Disallowing the use of suction lift pumps;
- b) Incorporating the special sprinkler systems, e.g. ESFR, large drop and deluge sprinkler systems;
- c) Vortex inhibitor;
- d) Remote test valve;
- e) System component fault monitoring;
- f) Location of sprinkler control valve;
- g) Protection against exposure hazard; and
- h) Full hydraulic calculations.

The following changes were made:

- a) Including more definitions;
- b) Revising the criteria of defining the limit to a single sprinkler installation to area of protection instead of number of sprinklers;
- c) Updating the list of hazard classification to follow closely to AS standards;
- d) Renaming of hazard classification;
- e) Revising the submission procedures for water services for the sprinkler systems;
- f) Removing re-cycling pre-action sprinkler system;
- g) Revising requirements of pump sets;
- h) Revising requirements for water alarm gong;
- i) Revising exemption list for non provision of sprinkler; and
- (j) Increasing maximum spacing between sprinklers for ordinary hazard group.

In preparing this code, reference was made to the following publications:

- a) AS 2118: 1999 Code for automatic fire sprinkler systems
- b) AS 4118: 1996 Code for components of automatic fire sprinkler systems
- c) AS 2941: 1995 Code for fixed fire protection installation Pumpset systems
- d) NFPA 13: 1999 Installation of sprinkler systems
- e) NFPA 20: 1999 Installation of stationary pumps for fire protection
- f) Fire Precautions for Buildings 2002

Acknowledgement is made for the use of the information from the above references.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

Code of practice for automatic fire sprinkler system

1 Scope

This code sets out requirements for the installation of automatic sprinkler systems in buildings. It also provides for occupancy classification.