SS ISO 11137-2 : 2019 ISO 11137-2: 2013, IDT (ICS 11.080.01)

SINGAPORE STANDARD

Sterilisation of health care products – Radiation

- Part 2 : Establishing the sterilisation dose

ISO 11137-2:2013, IDT (ICS 11.080.01)

SINGAPORE STANDARD

Sterilisation of health care products - Radiation

- Part 2: Establishing the sterilisation dose

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© ISO 2013 – All rights reserved © Enterprise Singapore 2019

ISBN 978-981-48-3595-4

The content of this Singapore Standard was approved on 30 August 2019 by the Biomedical and Health Standards Committee (BHSC) under the purview of the Singapore Standards Council.

First published 2020

BHSC consists of the following members:

		Name	Representation
Chairman	:	Dr Yong Chern Chet	Individual Capacity
Deputy Chairmen	:	Mr Vincent Cheung	Individual Capacity
		Ms Selina Seah	Changi General Hospital
		Ms Wong Woei Jiuang	Health Sciences Authority
Advisor	:	Ms Jacqueline Monteiro	Individual Capacity
Secretary	:	Mr Kevin Tan	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Mr Alec Chow Boon Kuan	Medtronic International Ltd
		Mr Chung Kwong Yuew	Temasek Polytechnic (BioMedical Engineering Faculty)
		Ms Heidi Goh	Singapore Manufacturing Federation (Medical Technology Industry Group)
		Prof James Goh	Biomedical Engineering Society (Singapore)
		Dr Lai Choon Sheen	Eu Yan Sang International Ltd
		Dr Christopher Lam	Health Sciences Authority
		Assoc Prof Leo Hwa Liang	National University of Singapore
		Dr Lin Jianhua	TÜV SÜD PSB Pte Ltd
		Dr Leonard Loh	Nanyang Polytechnic
		Ms Audrey Lok	Enterprise Singapore
		Assoc Prof Eddie Ng Yin Kwee	Nanyang Technological University
		Dr Ong Siew Hwa	Acumen Research Laboratories Pte Ltd
		Dr Padmanabhan Saravanan	Temasek Polytechnic (Centre of Innovation for Complementary Health Products)
		Mr Peh Ruey Feng	Advent Access Pte Ltd
		Prof Tan Puay Hoon	Singapore Health Services Pte Ltd
		Ms Wang Dan	Biosensors International Group
		Dr Sidney Yee	Diagnostics Development (DxD) Hub
		Dr Zhou Zhihong	Singapore Bioimaging Consortium

BHSC sets up the Technical Committee on Quality Management Systems to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Representation
Chairman	:	Ms Heidi Goh	Individual Capacity
Secretary	:	Mr Kevin Tan	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Ms Jasmine Chan	Konica Minolta Business Solutions Asia Pte Ltd
		Ms Shiirlyn Ee	Illumina
		Ms Katherine Goh	Singapore Accreditation Council
		Dr Christopher Lam	Health Sciences Authority
		Mr Ng Chee Kai	Becton Dickinson Medical Products Pte Ltd
		Mr Ariq Tan	Sivantos
		Ms Grace Tan	Edward Lifesciences (Singapore) Pte Ltd
		Ms Diana Teo	Medtronic International Ltd
		Ms Wang Dan	Biosensors International Group
		Ms Zhu Huifang	Smith & Nephew Pte Ltd

The Technical Committee sets up the National Mirror Working Group on ISO/TC 210 to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

		Name
Convenor	:	Dr Margam Chandrasekaran
Secretary	:	Mr She Long Huai
Members	:	Ms Heidi Goh
		Ms How Pei Sin
		Mr Liew Ee Bin
		Mr Jason Lim
		Mr Narayanan Sethu
		Mr Caleb Ng
		Mr Paul Tan

The organisations in which the experts of the National Mirror Working Group are involved are:

Access-2-Healthcare BioPharmaSpec UK Ltd Edwards Lifesciences (Singapore) Pte Ltd Sanmina Corporation Singapore Singapore Manufacturing Federation (Medical Technology Industry Group) Stendard SysteMED Pte Ltd TÜV SÜD PSB Pte Ltd Wise Consultants and Services Pte Ltd

Contents

Page

Nation	nal Foreword	8
Forew	ord	9
Introd	luction	10
1	Scope	12
2	Normative references	12
3	 Terms, definitions, and abbreviated terms 3.1 Terms and definitions 3.2 Abbreviated terms 	.12
4	Definition and maintenance of product families for dose setting, dosesubstantiation, and sterilization dose auditing4.1General	16 .16 .17 .18 idit .19
5	 Selection and testing of product for establishing the sterilization dose	.19 20 .20 21
6	 5.3 Manner of sampling	.22 .22
7	Method 1: dose setting using bioburden information7.1Rationale	23
	 Table 3 — Standard distribution of resistances (SDR) used in Method 1 (see Reference 0) Table 4 — Probabilities of occurrence of numbers of positives around an averag of one, distributed according to the Poisson distribution 7.2 Procedure for Method 1 for product with an average bioburden greater than or equal to 1,0 for multiple production batches. 	e 24
	 Table 5 — Radiation dose (kGy) required to achieve a given SAL for an average bioburden greater than or equal to 1,0, which has the standard distribution of resistances (SDR) 7.3 Procedure for Method 1 for product with an average bioburden greater than or equal to 1,0 for a single production batch 7.4 Procedure for Method 1 for product with an average bioburden in the range 0,1 t 0,9 for multiple or single production batchs 	.32 o

	Table 6 — Radiation dose (kGy) required to achieve a given SAL for an average bioburden in the range of 0,1 to 0,9 having the standard distribution of resistar (SDR)				
8	Method 2: Dose setting using fraction positive information from incremental dosing to determine an extrapolation factor8.1Rationale8.2Procedure for Method 2A	35			
	Table 7 — Values of A for different numbers of positive tests of sterility at mediffp (Method 2A)8.3Procedure for Method 2B	37			
	Table 8 — Values of A for different numbers of positive tests of sterility at medi ffp (Method 2B)				
9	Method VD _{max} — Substantiation of 25 kGy or 15 kGy as the sterilization dose 9.1 Rationale	44			
	9.2 Procedure for Method VD _{max} ²⁵ for multiple production batches	45			
	Table 9 — Values of VD_{max}^{25} and SIP dose reduction factors for levels of average bioburden less than or equal to 1 000 CFU				
	Table 9 (continued)	48			
	9.3 Procedure for Method VD _{max} ²⁵ for a single production batch	51			
	9.4 Procedure for Method VD _{max} ¹⁵ for multiple production batches	54			
	Table 10 — Values of VD _{max} ¹⁵ for levels of average bioburden less than or equal to 1,5 0.5	55			
	9.5 Procedure for Method VD _{max} ¹⁵ for a single production batch				
10	Sterilization dose audit10.1Purpose and frequency				
	10.1 Procedure for auditing a sterilization dose established using Method 1,	00			
	Method 2A, or Method 2B				
	$10.3 \mbox{Procedure for auditing a sterilization dose substantiated using Method VD_{max}^{22} \ \mbox{Method VD}_{max}^{15} \ $				
	Table 11 — Method VD_{max}^{25} augmentation values for average bioburden less than or equ to 1 000				
	Table 11 (continued)	69			
	Table 12 — Method VD_{max}^{15} augmentation values for average bioburden less than				
	or equal to 1,5 10.4 Failure of a sterilization dose audit				
11	Worked examples	70			
	11.1 Worked examples for Method 1	70			
	Table 13 — Determination of sterilization dose (Method 1, SIP equal to 1,0)	70			
	Table 14 — Determination of sterilization dose (Method 1, SIP less than 1,0)	71			
	Table 15 — Determination of sterilization dose (Method 1, SIP equal to 1,0, bioburden less than 1,0)	72			
	11.2 Worked examples for Method 2	73			
	Table 16 — Number of product items for irradiation at various incremental doses	73			

	Table 17 — Typical data derived from incremental dose experiment (number of positive tests of sterility from 20 tests performed on individual product items)	
	Table 18 — Stage 2 calculations	74
	Table 19 — Stage 3 calculations	75
	Table 20 — Stage 4 calculations to establish sterilization dose	75
	Table 21 — Number of product items for irradiation at various incremental doses	76
	Table 22 — Typical data derived from incremental dose experiment (number of positive tests of sterility from 20 tests performed on individual SIPs)	
	Table 23 — Stage 2 calculations	77
	Table 24 — Stage 3 calculations	77
	Table 25 — Stage 5 calculations to establish sterilization dose	78
	Table 26 — Number of product items for irradiation at various incremental doses	79
	Table 27 — Incremental dose data	79
	Table 28 — Stage 2 calculations	80
	Table 29 — Stage 3 calculations	80
	Table 30 — Stage 5 calculations to establish sterilization dose11.3 Worked examples for Method VDmax	
	Table 31 — Method VD _{max} ²⁵ substantiation (SIP less than 1,0)	81
	Table 32 — Method VD _{max} 15 substantiation (SIP equal to 1,0)11.4 Worked example of a sterilization dose audit for a dose established usingMethod 1, the findings from which necessitated augmentation of the sterilization dose	
	Table 33 — Sterilization dose audit following which augmentation was required(sterilization dose established using Method 1)11.5Worked example of a sterilization dose audit for a dose established usingMethod 2A, the findings from which necessitated augmentation of the sterilizationdose	84
	Table 34 — Sterilization dose audit following which augmentation was required(Sterilization dose established using Method 2A)11.6 Worked example of a sterilization dose audit for a sterilization dose substantiatusing Method VDmax ²⁵	85 ted
	Table 35 — Method VD _{max²⁵} dose audit (audit non-acceptance and	
	augmentation)	
Bibliog	raphy	88

National Foreword

This Singapore Standard was prepared by the National Mirror Working Group on ISO/TC 210 set up by the Technical Committee on Quality Management Systems under the purview of BHSC.

This Standard is identical with ISO 11137-2:2013, "Sterilization of health care products – Radiation – Part 2: Establishing the sterilization dose", published by the International Organization for Standardization.

NOTE 1 – Reference to International Standards are replaced by applicable Singapore Standards/Technical References.

NOTE 2 – Where numerical values are expressed as decimals, the comma is read as a full point.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature Standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 11137-2 was prepared by Technical Committee ISO/TC 198, Sterilization of health care products.

This third edition cancels and replaces the second edition (ISO 11137-2:2012), of which it constitutes a minor revision with the following changes:

- addition of the word "and" in 9.1, second paragraph, third sentence;
- addition of the word "not" in 10.3.4.1, third paragraph;
- correction of the language used to describe requirements for interpretation of results during a verification dose experiment in the second paragraph in 7.2.6.2, 7.3.7.2, 9.2.6.3, 9.3.7.3, 9.4.6.3, and 9.5.7.3.

ISO 11137 consists of the following parts, under the general title *Sterilization of health care products* — *Radiation*:

- Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices
- Part 2: Establishing the sterilization dose
- Part 3: Guidance on dosimetric aspects

Introduction

This part of ISO 11137 describes methods that can be used to establish the sterilization dose in accordance with one of the two approaches specified in 8.2 of ISO 11137-1:2006. The methods used in these approaches are:

- dose setting to obtain a product-specific dose;
- dose substantiation to verify a preselected dose of 25 kGy or 15 kGy.

The basis of the dose setting methods described in this part of ISO 11137 (Methods 1 and 2) owe much to the ideas first propounded by Tallentire⁰⁰⁰. Subsequently, standardized protocols were developed⁰⁰, which formed the basis of the dose setting methods detailed in the AAMI Recommended Practice for Sterilization by Gamma Radiation⁰⁰.

Methods 1 and 2 and the associated sterilization dose audit procedures use data derived from the inactivation of the microbial population in its natural state on product. The methods are based on a probability model for the inactivation of microbial populations. The probability model, as applied to bioburden made up of a mixture of various microbial species, assumes that each such species has its own unique D_{10} value. In the model, the probability that an item will possess a surviving microorganism after exposure to a given dose of radiation is defined in terms of the initial number of microorganisms on the item prior to irradiation and the D_{10} values of the microorganisms. The methods involve performance of tests of sterility on product items that have received doses of radiation lower than the sterilization dose. The outcome of these tests is used to predict the dose needed to achieve a predetermined sterility assurance level (SAL).

Methods 1 and 2 can also be used to substantiate 25 kGy if, on performing a dose setting exercise, the derived sterilization dose for an SAL of 10^{-6} is less than or equal to 25 kGy. The basis of the method devised specifically for substantiation of 25 kGy, Method VD_{max}, was put forward by Kowalski and Tallentire⁰. Subsequent evaluations involving computational techniques demonstrated that the underlying principles were soundly based⁰ and field trials confirmed that Method VD_{max} is effective in substantiating 25 kGy for a wide variety of medical devices manufactured and assembled in different ways⁰.

A standardized procedure for the use of VD_{max} for substantiation of a sterilization dose of 25 kGy has been published in the AAMI Technical Information Report *Sterilization of health care products* — *Radiation sterilization* — *Substantiation of 25 kGy as a sterilization dose* — *Method* VD_{max} ⁰, a text on which the method described herein is largely based. Method VD_{max} is founded on dose setting Method 1 and, as such, it possesses the high level of conservativeness characteristic of Method 1. In a similar manner to the dose setting methods, it involves performance of tests of sterility on product items that have received a dose of radiation lower than the sterilization dose. The outcomes of these tests are used to substantiate that 25 kGy achieves an SAL of 10⁻⁶.

To link the use of VD_{max} for the substantiation of a particular preselected sterilization dose, the numerical value of the latter, expressed in kilograys, is included as a superscript to the VD_{max} symbol. Thus, for substantiation of a sterilization dose of 25 kGy, the method is designated Method VD_{max}^{25} .

Method VD_{max}^{15} is based on the same principles as Method VD_{max}^{25} . The test procedure is similar to that of Method VD_{max}^{25} , but Method VD_{max}^{15} is limited to product with an average bioburden less than or equal to 1,5. The outcomes of the associated tests of sterility are used to substantiate that 15 kGy achieves a sterility assurance level of 10^{-6} .

This part of ISO 11137 also describes methods that can be used to carry out sterilization dose audits in accordance with ISO 11137-1:2006, Clause 12. Following establishment of the sterilization dose, sterilization dose audits are performed routinely to confirm that the sterilization dose continues to achieve the desired SAL.

Sterilization of health care products — Radiation —

Part 2: **Establishing the sterilization dose**

1 Scope

This part of ISO 11137 specifies methods for determining the minimum dose needed to achieve a specified requirement for sterility and methods to substantiate the use of 25 kGy or 15 kGy as the sterilization dose to achieve a sterility assurance level, SAL, of 10^{-6} . This part of ISO 11137 also specifies methods of sterilization dose audit used to demonstrate the continued effectiveness of the sterilization dose.

This part of ISO 11137 defines product families for sterilization dose establishment and sterilization dose audit.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11137-1:2006, Sterilization of health care products — Radiation — Part 1: Requirements for the development, validation and routine control of a sterilization process for medical devices

ISO 11737-1, Sterilization of medical devices — Microbiological methods — Part 1: Determination of a population of microorganisms on products

ISO 11737-2, Sterilization of medical devices — Microbiological methods — Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process