

TECHNICAL REFERENCE Code of practice for storage, land transportation and handling of LNG

TR 74 : 2020 (ICS 75.200)

TECHNICAL REFERENCE

Code of practice for storage, land transportation and handling of LNG

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Technical Reference may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© Enterprise Singapore 2020

ISBN 978-981-48-9477-7

The content of this Technical Reference was approved on 30 March 2020 by the Chemical Standards Committee (CSC) under the purview of the Singapore Standards Council.

First published, 2020

CSC consists of the following members:

		Name	Representation
Chairman	:	Dr Keith Carpenter	Individual Capacity
Deputy Chairman	:	Er. Lucas Ng Hong Kiang	Individual Capacity
Secretary 1	:	Ms Elane Ng	Standards Development Organisation@Singapore Chemical Industry Council
Secretary 2	:	Ms Rosmalinda Tay	Standards Development Organisation@Singapore Chemical Industry Council
Members	:	Mr Goh Tiak Boon	Individual Capacity
		Prof Alfred Huan	Individual Capacity
		Er. Khong Beng Wee	Individual Capacity
		Mr Terence Koh	Singapore Chemical Industry Council Limited
		Dr Leong Kwai Yin	Individual Capacity
		Dr Thomas Liew	National Metrology Centre
		Mr Lim Eng Kiat	Individual Capacity
		Mdm Jaime Lim	Ministry of Manpower
		Mr Lim Kian Chye / Mr Ng Eng Fu	Housing & Development Board
		Prof Loh Kian Ping	National University of Singapore
		Dr Loh Wah Sing	Individual Capacity
		Ms Pamela Phua	Singapore Paint Industry Association
		Mr Seah Khen Hee	Individual Capacity
		A/Prof Timothy Tan	Nanyang Technological University
		Dr Teo Tang Lin	Chemical Metrology Division, Health Sciences Authority
		Mr Yao Yikai	Maritime and Port Authority of Singapore
		Ms Suzanna Yap	National Environment Agency
Co-opted Members	:	Ms Christina Loh	Individual Capacity
		Mr Pitt Kuan Wah	Individual Capacity

CSC sets up the Technical Committee on Petroleum Processes and Products to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Representation
Chairman	:	Er. Khong Beng Wee	Individual Capacity
Secretary	:	Mr Teo Wen Liang	Standards Development Organisation@Singapore Chemical Industry Council
Members	:	Mr Chung Tying Chun A/Prof Hong Liang Mr Kho Ho Meng Er. Jacqueline Liew LTC Ng Geok Meng Mr Poon Chiew Tuck Mr Sundar Rajaraman Dr Sin Siang Meng Ivan / Mr Koh Soon Chuang Mr Soh Hong Chow Mr Tan Kian Hwee	Setsco Services Pte Ltd National University of Singapore Singapore Refining Company Private Limited Ministry of Manpower Singapore Civil Defence Force National Environment Agency ExxonMobil Chemical Operations Private Limited Institution of Fire Engineers, Singapore SGS Testing & Control Services Pte Ltd Sembcorp Industries Ltd

The Technical Committee sets up the Working Group on Land Transportation, Handling and Storage of LNG to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

		Name
Convenor	:	Mr Nicholas Yong Kok Choon
Members	:	Mr Cai Zong Neng Mr Danny Chan
		Mr George Cui Jun Wu Mr Goh Hock Nguan
		Mr Desmond Lee
		Mr Gary Lim
		Mr Bentinck Ng Wei Hua
		Mr André Philippe du Plessis
		CPT Shavithiya Shanmugam
		Mr Siah Poh Chiang
		Mr Ken Tan
		Mr Jason Thong
		Ms Jan Woon
		Mr Nicholas Yip Wei Hao
		Mr Zheng Hui Jian

The organisations in which the experts of the Working Group are involved are:

Air Products Singapore Industrial Gases Pte Ltd American Bureau of Shipping Bureau Veritas Singapore Pte Ltd Energy Market Authority FueLNG Pte Ltd Gashubunited Utility Pte Ltd Industrial Gas Association of Singapore Leeden National Oxygen Ltd Maritime Port Authority of Singapore Ministry of Manpower Pavilion Energy Singapore Pte Ltd **PSA** Corporation Shell Eastern Petroleum Pte Ltd Singapore Civil Defence Force Singapore LNG Corporation Pte Ltd SSB Cryogenic Equipment Pte Ltd

Contents

Forewo	Foreword 10			
0	Introduction	12		
0.1	Properties of LNG	12		
0.2	Formation of LNG	12		
1	Scope	13		
2	Normative references	13		
3	Terms, definitions and abbreviations	14		
4	Storage of LNG	15		
4.1	Overview of LNG storage tanks	15		
4.2	PLC/dewar and microbulk storage tanks – Minimum technical specifications	16		
4.2.1	Introduction	16		
4.2.2	Design code	17		
4.2.3	Materials of construction	17		
4.2.4	Measurement devices	17		
4.2.5	Getters	18		
4.2.6	Pressure relief devices	18		
4.2.7	Valves, regulators and relief devices	18		
4.2.8	Fill port connector	18		
4.2.9	Pressure strength and leak testing	19		
4.2.10	Mass spectrometer leak detection (MSLD) test	19		
4.2.11	Warm vacuum acceptance criterion	19		
4.2.12	Tags and decal	19		
4.3	Stationary LNG storage tanks – Minimum technical specifications	19		
4.3.1	General	19		
4.3.2	Design code	20		
4.3.3	Materials of construction	20		
4.3.4	Measurement devices	21		
4.3.5	Getters	21		
4.3.6	Pressure relief devices	21		
4.3.7	Valves, regulators and relief devices	22		
4.3.8	ESD control panel	23		
4.3.9	Gas detectors	23		
4.3.10	Gaseous nitrogen/instrument air (N ₂ /IA) supply for valve actuation	23		
4.3.11	Overfilling and overpressure protection	24		
4.3.12	Vent stack	25		

Page

4.3.13	Fill port connector	25
4.3.14	Storage tanks foundation and supports	25
4.3.15	Pressure strength and leak testing	25
4.3.16	Mass spectrometer leak detection (MSLD) test	25
4.3.17	Warm vacuum acceptance criterion	26
4.3.18	Tags and decal	
4.4	Ambient vaporisers – Minimum technical specifications	
4.4.1	General requirements	26
4.4.2	Design requirements	26
4.4.3	Defrosting	27
4.4.4	Prevention of cold embrittlement downstream of pipeline or equipment	28
4.5	Thermal safety valve	31
4.6	Pressure control manifold (PCM)	31
4.7	Interconnecting pipework	31
4.8	Colour coding	33
4.9	General design and layout requirements	33
4.9.1	General requirements	33
4.9.2	Recommended minimum safety distances	33
4.9.3	Tank installation	34
4.9.4	Electrical equipment and installation	34
4.10	Typical risk management for an LNG storage tank farm	36
4.10.1	Risk assessment	36
4.10.2		
4.10.3	Quantitative risk assessment	37
4.10.4	Safety and health management system	38
4.11	Schematic drawing of a general arrangement of LNG storage tanks	38
5	Land transportation of LNG	38
5.1	Transport vehicles – Minimum technical specifications	38
5.1.1	Cylinder truck specifications	38
5.1.2	Rigid tanker specifications	39
5.1.3	Prime mover specifications	
5.1.4	Semi-trailer running gears specifications	39
5.1.5	Skeletal trailer chassis specifications	40
5.1.6	Transport emergency information panel	40

5.2	Cryogenic vessel – Minimum technical specifications
5.2.1	Pressure vessel design code
5.2.2	General design requirements
5.2.3	ISO tanker specific design requirement
5.2.4	Safety tree design and safety tree sizing criteria
5.2.5	Quality control requirement
5.2.6	Emergency shut-off valve (ESV)
5.2.7	Emergency remote shutdown button stations
5.2.8	Emergency shutdown link for tanker
5.2.9	Anti-tow away system
5.2.10	Earthing lug
5.2.11	LNG transfer pump on transportation vehicle
5.2.12	Documentation
5.3	Transportation approval
5.4	Additional road safety technology for LNG transportation
5.4.1	Objective
5.4.2	Vehicle tracking system
5.4.3	In-cabin camera system
5.4.4	Other related technology solutions
5.4.5	Driver management system
5.4.6	Schematic drawing of transport vehicle
6	Handling of LNG
6.1	Stationary LNG storage tank
6.1.1	LNG tank purge, cool down and first fill commissioning
6.1.2	Decommissioning of an LNG storage tank from customer site
6.2	Distribution/Transportation
6.2.1	LNG trailer tank purge, cool down and first fill commissioning
6.2.2	LNG safe loading from LNG terminal to semi-trailer / ISO tanker (to comply with the LNG terminal procedure)
6.2.3	Routine safe off-loading of LNG from semi-trailer/ISO tanker to an LNG storage tank
6.2.4	Prevention of tow-away
6.2.5	Prevention of overpressure of storage tank or transport tankers during product loading
6.2.6	Pre-filling customer own tanks (COT)
6.2.7	Safe transportation of portable liquid cylinders (PLC) or dewars
6.2.8	Prevention of accidents due to overheated or burning tyres

Page

6.3	Training	54
6.3.1	Overview	54
6.3.2	Job specific training	54
6.3.3	Refresher training of drivers, management and other transport function personnel	55
6.3.4	Human behaviour within transport operations	56
6.4	Personal protective equipment and hand tools	57
6.5	Emergency response plan	57
6.6	Periodic scheduled maintenance	58

Annexes

A	Abbreviations	61
В	Example of a pneumatic ESD link system	63
С	Typical general arrangements of LNG storage tanks	64
D	Schematic of a transport tanker vessel without pump	71
Е	Example of transport tanker types	72

Tables

1	Design considerations for LNG storage tanks	16
2	Causes of low temperature	30
3	Proposed materials for interconnecting pipework	32
4	Recommended minimum safety distances	33
5	Risk matrix	37

Figures

1	LNG storage tank capacities	15
2	Pneumatic ESD interlink between LNG storage tank and LNG tanker	24
3	Typical location of emergency shutdown buttons for tanker with rear discharge connection	42
4	Typical location of emergency shutdown buttons for tanker with side discharge connection	43
B.1	Essential components of pneumatic ESD link system	63
B.2	Example of pneumatic ESD interlink between LNG terminal and LNG tanker	63
C.1	Typical general arrangement of a transportable PLC/dewar	64
C.2	Typical general arrangement of a microbulk tank	65
C.3	Typical general arrangement of a bulk storage tank	66
C.4	Typical schematic of a transportable PLC/dewar	67
C.5	Typical schematic of a microbulk tank	68

Page

C.6	Typical schematic of bulk storage tank	69
C.7	Typical general arrangement of an LNG storage tank	70
E.1	Rigid tanker	72
E.2	Prime mover coupled with semi-trailer tanker	72
E.3	Prime mover coupled with ISO tanker	72
Biblio	graphy	73

Foreword

This Technical Reference (TR) was prepared by the Working Group on Storage, Land Transportation and, Handling of LNG set up by the Technical Committee on Petroleum Processes and Products under the purview of CSC.

This TR helps to facilitate the storage, land transportation and handling of LNG for downstream endusers, as well as to support the sustainability of the industry by enabling the use of an alternative fuel and providing new growth opportunities to the growing trend of adopting small-scale LNG solutions in Singapore.

It also promotes the standardisation of equipment specifications and installation for storage tanks, transport tankers, and associated facilities, as well as ensuring personnel handling/operating the equipment are suitably trained and competent so as to enhance Singapore's current position as one of the world's largest bunkering port and its vision to become a major LNG trading hub in Asia.

This TR complements TR 56 which covers LNG delivery from LNG bunkering facilities to receiving ships through four modes of transfer (shore-to-ship, truck-to-ship, ship-to-ship bunkering and cassette bunkering).

This TR is expected to be used by any business entities that are interested in or involved with the storage, land transportation and handling of LNG in Singapore.

It is presupposed that in the course of their work, users will comply with all relevant regulatory and statutory requirements. Some examples of relevant regulations and acts are listed in the Bibliography. The Singapore Standards Council and Enterprise Singapore will not be responsible for identifying all of such legal obligations.

This TR is a provisional standard made available for application over a period of three years. The aim is to use the experience gained to update the TR so that it can be adopted as a Singapore Standard. Users of the TR are invited to provide feedback on its technical content, clarity and ease of use. Feedback can be submitted using the form provided in the TR. At the end of the three years, the TR will be reviewed, taking into account any feedback or other considerations, to further its development into a Singapore Standard if found suitable.

Permissions were sought from the following organisations to reproduce materials from their publications:

Asia Industrial Gases Association

AIGA 027/06	Cryogenic vaporisation systems – Prevention of brittle fracture of equipment and piping	
AIGA 038/06	Vertical cylinder handling and transportation	
AIGA 039/16	Road transport & product delivery emergency preparedness	
AIGA 092/15	Prevention of tow away accidents	
AIGA SB 10/17	Prevention of accidents due to overheated of burning tyres	
AIGA SB 11/18	Human behaviour within transport operations	
European Industrial Gases Association		
EIGA TS 03/13	Training: Induction and refresher training of drivers, management & other	

EIGA TS 03/13 Training: Induction and refresher training of drivers, management & other transport function personnel

International Organization for Standardization

ISO 16924 Separation distances of stationary LNG fuelling installation

Table 4 of this TR was adapted from Table B.2 of ISO 16924. The following items were omitted from Table 4 as they are beyond the scope of this TR.

- LNG storage tanks 120 m³ to 300 m³
- LNG storage tanks >300 m³
- Boundary limit LNG tank offloading connection
- Overhead electric power lines, above 600 V
- Dispenser Onsite buildings
- If dead man's button limits the accidental discharge to LNG to 60 s

Acknowledgement is made for the use of information from the above publications.

Attention is drawn to the possibility that some of the elements of this TR may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature Standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.

^{2.} An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.

^{3.} Compliance with a SS or TR does not exempt users from any legal obligations.

Technical Reference – Code of practice for storage, land transportation and handling of LNG

0 Introduction

0.1 Properties of LNG

Liquefied natural gas (LNG) is a colourless, odourless, non-toxic and non-corrosive fluid. During the liquefaction process, the natural gas (NG) is treated to remove most of the heavy hydrocarbons, water and other impurities such as carbon dioxide and hydrogen sulphide. LNG is maintained in a liquid state when it is stored at its boiling temperature of around -162 °C. In this condition, it can be maintained at near atmospheric pressure. In liquid form, the volume of NG is reduced by approximately 600 times. Storing and transporting LNG represents different challenges when compared to traditional oil-based liquid fuels, both as a cryogenic liquid and as a flammable gas. As a liquid, these challenges are primarily associated with the cryogenic hazards of a liquid stored at -162 °C. They include brittle fracturing of unprotected structures, cryogenic burns, pressure increases caused by rapid transition to a gas and possible asphyxiation hazards if collected in confined spaces.

The fire and explosion hazards presented by LNG are primarily a result of these factors:

- A lower flashpoint (the lowest liquid temperature at which, under certain standardised conditions, a liquid gives off vapours in quantity such as to be capable of forming a flammable mixture in the presence of air). For NG, this is approximately -187 °C, compared to traditional fuel oils, which have a flashpoint in excess of 60 °C.
- A higher auto-ignition temperature (the lowest temperature of a hot surface at which, under specified test conditions, an ignition occurs of a flammable gas or vapour in a mixture with air or air/inert gas). For NG, this is in the region of 580 °C to 600 °C.
- A flammable range of between a lower explosive limit (LEL) of 5 % and an upper explosive limit (UEL) of 15 % when mixed with air.
- Lower ignition energy. For natural gas/air mixtures, this is 0.25 mJ, which is lower than most other hydrocarbons.

The principal difference between LNG and oil-based liquid fuels, that drives the different statutory requirements, is the lower flashpoint of NG. Furthermore, low energy sparks have a higher risk of ignition for NG releases.

0.2 Formation of LNG

Unrefined NG is a naturally occurring hydrocarbon gas mixture of methane and smaller fractions of other heavier hydrocarbons, (such as: ethane; propane; and butane), as well as various contaminants (such as: moisture (water); mercury; carbon dioxide; nitrogen; and hydrogen sulphide). LNG is NG that has been treated (to remove the contaminants, as well as excess heavy hydrocarbons) and then converted to its liquid state to make its storage and transportation more efficient.

As LNG is stored in its liquid state, the equipment used for transporting and storage of LNG is usually double-jacketed pressure vessels that are specially designed to be vacuum insulated.

Conversion of LNG to NG is typically undertaken by an ambient vaporiser, where the LNG is evaporated or vaporised from its liquid state to a gaseous state. The NG then passes through a pressure control manifold (PCM) which controls the pressure and flow to supply the downstream users via pipeline.

1 Scope

This TR sets out the design and operational requirements and recommendations for the inland handling, storage and land transportation of LNG.

This TR covers portable liquid cylinders (PLC), stationary storage facilities (e.g. microbulk tanks/bulk storage tanks) and the various means for transporting LNG applicable to bulk delivery and packaged gas delivery.

The maximum capacity of an individual stationary storage tank under this TR is 100,000 litres water capacity. Refer to 4.2.1.

This TR specifies the minimum requirements for the design, construction and operation of an onshore LNG storage tank farm and does not cover the following:

- LNG liquefaction plant design and installation;
- off-shore LNG installations (e.g. floating installations);
- facilities such as a PLC trans-fill terminal (with exception of the storage tank), or temporary LNG/NG facilities being used for activities such as equipment commissioning;
- underground LNG storage tanks;
- design and specification for LNG vehicle fuel tanks and fuel stations.

The operators/service providers conduct a risk assessment on the overall project design to ensure any potential risks are being addressed and mitigated.

Key hazardous scenarios in a risk assessment for the storage, land transportation and handling of LNG would be expected to include, but not limited to, the following:

- Tank over pressure;
- Tank over filling;
- Cold embrittlement of carbon steel equipment and/or structures;
- Loss of containment (leak) of LNG during unloading or loading operations;
- Formation and dispersion of cold vapour clouds of LNG via poor vent stack design or discharge of NG gas in the tank farm;
- Pipeline over pressure due to regulator failure;
- Rapid phase transition.

2 Normative references

The following referenced documents are indispensable for the application of this standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

AIGA 08/17	In-cab camera and how does it help to improve road safety
AIGA 038/06	Vertical cylinder handling and transportation
AIGA 039/16	Road transport and product delivery emergency preparedness
AIGA 092/15	Prevention of tow-away incidents
AIGA SB 10/17	Prevention of accidents due to overheated of burning tyres
AIGA SB 11/18	Human behaviour within transport operations
ASME	Boiler and Pressure Vessel Code Section VIII Division 1
ASTM A240	Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications

BS EN 13458-2	Cryogenic vessels. Static vacuum insulated vessels. Design, fabrication, inspection and testing
CGA 341	Specification for insulated cargo tank for nonflammable cryogenic liquids
EIGA TS 03/13	Training: Induction and refresher training of drivers, management and other transport function personnel
IEC 60079 series	Explosive atmosphere standard
IMDG	International Maritime Dangerous Goods Code
ISO 10497	Testing of valves – Fire type-testing requirements
ISO 1496 series	Series 1 freight containers – Specification and testing
ISO 16924	Natural gas fuelling stations – LNG stations for fuelling vehicles
ISO 21013-3	Cryogenic vessels – Pressure-relief accessories for cryogenic service – Part 3: Sizing and capacity determination
ISO 21029-1	Cryogenic vessels – Transportable vacuum insulated vessels of not more than 1 000 litres volume – Part 1: Design, fabrication, inspection and tests
IP 15	Area classification code for installations handling flammable liquids
SS 555 series	Protection against lightning standard
SS 586 series	Specification for hazard communication for hazardous chemicals and dangerous goods standard
SS 608	Code of practice for gas installation