SS EN 1993-4-1:2011+A1:2020 EN 1993-4-1:2007+A1:2017

(ICS 65.040.20; 91.010.30; 91.080.10)

SINGAPORE STANDARD

Eurocode 3 : Design of steel structures

- Part 4-1 : Silos

Incorporating Amendment No. 1

SS EN 1993-4-1:2011+A1:2020

EN 1993-4-1:2007+A1:2017 (ICS 65.040.20; 91.010.30; 91.080.10)

SINGAPORE STANDARD

Eurocode 3: Design of steel structures

- Part 4-1 : Silos

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© Enterprise Singapore 2020

ISBN 978-981-4278-99-7

SS EN 1993-4-1:2011+A1:2020

This Singapore Standard was approved by the Building and Construction Standards Committee on behalf of the Standards Council of Singapore on 22 March 2011.

First published, 2011

The Building and Construction Standards Committee appointed by the Standards Council consists of the following members:

		Name	Capacity
Chairman	:	Mr Goh Peng Thong	Member, Standards Council
1 st Dy Chairman	:	Mr Lee Chuan Seng	Member, Standards Council
2 nd Dy Chairman	:	Mr Tan Tian Chong	Member, Standards Council
Secretary	:	Ms Tan Chiew Wan	SPRING Singapore
Members	:	Mr Boo Geok Kwang	Singapore Civil Defence Force
		Er. Chan Ewe Jin	Institution of Engineers, Singapore
		Mr Chan Yew Kwong	Ministry of Manpower
		Mr Paul Fok	Land Transport Authority
		Mr Goh Ngan Hong	Singapore Institute of Surveyors and Valuers
		Mr Anselm Gonsalves	National Environment Agency
		Mr Desmond Hill	Singapore Contractors Association Limited
		Mr Benedict Lee Khee Chong	Singapore Institute of Architects
		Ms Andris Leong	Building and Construction Authority
		Assoc Prof Leong Eng Choon	Nanyang Technological University
		Dr Lim Lan-Yuan	Association of Property and Facility Managers
		Mr McDonald Low	Real Estate Developers' Association of Singapore
		Mr Larry Ng Lye Hock	Urban Redevelopment Authority
		Assoc Prof Gary Ong Khim Chye	National University of Singapore
		Mr Davis Ong Wee Choon	Singapore Manufacturers' Federation
		Er. Shum Chee Hoong	Housing & Development Board
		Dr Tan Guan	Association of Consulting Engineers, Singapore
		Er. Tang Pei Luen	JTC Corporation
Co-opted Members	:	Prof Choo Yoo Sang	National University of Singapore
-		Dr Tam Chat Tim	Individual Capacity
			• •

SS EN 1993-4-1:2011+A1:2020

The Technical Committee on Building Structure and Sub-structure appointed by the Building and Construction Standards Committee and responsible for the preparation of this standard consists of representatives from the following organisations:

		Name	Capacity
Chairman	:	Dr Tan Guan	Member, Building and Construction Standards Committee
Co-Chairman	:	Er. Chew Keat Chuan	Building and Construction Authority
Secretary	:	Ms Lee Hiok Hoong	SPRING Singapore
Members	:	Er. Chan Ewe Jin	Institution of Engineers, Singapore
		Dr Ho Nyok Yong	Singapore Contractors Association Limited
		Mr Ho Wan Boon	Singapore Structural Steel Society
		Mdm Neo Bian Hong	Land Transport Authority
		Assoc Prof Gary Ong Khim Chye	Singapore Concrete Institute
		Mr Sze Thiam Siong	Setsco Services Pte Ltd
		Er. Angeline Tan Bee Hoon	Housing & Development Board
		Er. Tan Jui Teck	CPG Corporation Pte Ltd
		Prof Tan Kiang Hwee	National University of Singapore
		Er. Tang Pei Luen	JTC Corporation
		Assoc Prof Susanto Teng	Nanyang Technological University
Co-opted Members	:	Prof Richard Liew Jat Yuen	National University of Singapore
		Dr Tam Chat Tim	Individual Capacity
		Dr Tan Teng Hooi	Individual Capacity

National Foreword

This Singapore Standard was prepared by the Technical Committee on Building Structure and Substructure under the purview of the Building and Construction Standards Committee.

This SS EN is the identical implementation of EN 1993-4-1 : 2007 'Eurocode 3 : Design of steel structures – Part 4-1 : Silos' (incorporating the CEN Corrigendum April 2009, denoted in the text by AC> <AC) and is adopted with permission of CEN, Avenue Marnix 17, 1000 Brussels.

Attention is drawn to the following:

- The comma has been used throughout as a decimal marker whereas in Singapore Standards, it is a practice to use a full point on the baseline as the decimal marker.
- The Singapore Standards which implement international or European publications referred to in this document may be found in the SS Electronic Catalogue at: http://www.singaporestandardseshop.sq

Where a normative part of the EN allows for national choice to be made, the range and possible choice will be given in the normative text as Recommended Values, and a note will qualify it as a Nationally Determined Parameter (NDP). NDPs can be a specific value for a factor, a specific level or class, a particular method or a particular application rule if several are proposed in the EN.

Singapore National Annex to SS EN 1993-4-1

To enable EN 1993-4-1 to be used in Singapore, the TC has decided that no National Annex will be issued and recommend the following:

- All the Recommended Values should be used;
- All Informative Annexes may be used; and
- No NCCI have currently been identified.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

June 2017

ICS 65.040.20; 91.010.30; 91.080.10

Incorporating corrigendum April 2009

English Version

Eurocode 3 - Design of steel structures - Part 4-1: Silos

Eurocode 3 - Calcul des structures en acier - Partie 4-1: Silos Eurocode 3 - Bemessung und Konstruktion von Stahlbauten - Teil 4-1: Silos

This European Standard was approved by CEN on 12 June 2006.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Contents

For	eword		4
1.	General		8
	1.1	Scope	8
	1.2	Normative references	8
	1.3	Assumptions	9
	1.4	Distinction between principles and application rules	9
	1.5	Terms and definitions	9
	1.6	Symbols used in Part 4.1 of Eurocode 3	12
	1.7	Sign conventions	14
	1.8	Units	19
2.	Basis of	design	20
	2.1	Requirements	20
	2.2	Reliability differentiation	20
	2.3	Limit states	21
	2.4	Actions and environmental effects	22
	2.5	Material properties	22
	2.6	Geometrical data	22
	2.7	Modelling of the silo for determining action effects	22
	2.8	Design assisted by testing	22
	2.9	Action effects for limit state verifications	23
		Durability	24
	2.11	Fire resistance	24
3.	Propert	ties of materials	25
	3.1	General	25
	3.2	Structural steels	25
	3.3	Stainless steels	25
	3.4	Special alloy steels	25
	3.5	Toughness requirements	26
4.	Basis for	r structural analysis	27
	4.1	Ultimate limit states	27
	4.2	Analysis of the structure of a shell silo	28
	4.3	Analysis of the box structure of a rectangular silo	31
	4.4	Equivalent orthotropic properties of corrugated sheeting	32
5.	Design o	of cylindrical walls	35
	5.1	Basis	35
	5.2	Distinctions between cylindrical shell forms	35
	5.3	Resistance of silo cylindrical walls	36
	5.4	Special support conditions for cylindrical walls	61
	5.5	Detailing for openings in cylindrical walls	66
	5.6	Serviceability limit states	67
6.	Design o	of conical hoppers	68
	6.1	Basis	68
	6.2	Distinctions between hopper shell forms	68
	6.3	Resistance of conical hoppers	69
	6.4	Considerations for special hopper structures	74
	6.5	Serviceability limit states	75

7.	Design (of circular conical roof structures	77
	7.1	Basis	77
	7.2	Distinctions between roof structural forms	77
	7.3	Resistance of circular conical silo roofs	77
8.	Design	of transition junctions and supporting ring girders	79
	8.1	Basis	79
	8.2	Analysis of the junction	80
	8.3	Structural resistances	89
	8.4	Limit state verifications	93
	8.5	Considerations concerning support arrangements for the junction	95
9.	Design	of rectangular and planar-sided silos	97
	9.1	Basis	97
	9.2	Classification of structural forms	97
	9.3	Resistance of unstiffened vertical walls	98
	9.4	Resistance of silo walls composed of stiffened and corrugated plates	98
	9.5	Silos with internal ties	101
	9.6	Strength of pyramidal hoppers	103
	9.7	Vertical stiffeners on box walls	105
	9.8	Serviceability limit states	105
Ann	ex A: [Inf	formative]	107
Simp	olified rul	es for circular silos in Consequence Class 1	107
	A.1	1	107
	A.2	Action effect assessment	107
	A.3	Ultimate limit state assessment	107
Ann	ex B: [Inf	formative]	114
Expi	essions fo	or membrane stresses in conical hoppers	114
Ann	ex C: [Inf	formative]	116
Disti	ibution o	f wind pressure around circular silo structures	116

Foreword

This European Standard EN 1993-4-1, "Eurocode 3: Design of steel structures – Part 4-1: Silos", has been prepared by Technical Committee CEN/TC250 « Structural Eurocodes », the Secretariat of which is held by BSI. CEN/TC250 is responsible for all Structural Eurocodes.

This European Standard shall be given the status of a National Standard, either by publication of an identical text or by endorsement, at the latest by August 2007 and conflicting National Standards shall be withdrawn at latest by March 2010.

This Eurocode supersedes ENV 1993-4-1:1999.

According to the CEN-CENELEC Internal Regulations, the National Standard Organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Foreword to amendment A1

This document (EN 1993-4-1:2007/A1:2017) has been prepared by Technical Committee CEN/TC 250 "Structural Eurocodes", the secretariat of which is held by BSI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2018, and conflicting national standards shall be withdrawn at the latest by June 2018.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Background of the Eurocode programme

In 1975, the Commission of the European Community decided on an action programme in the field of construction, based on article 95 of the Treaty. The objective of the programme was the elimination of technical obstacles to trade and the harmonisation of technical specifications.

Within this action programme, the Commission took the initiative to establish a set of harmonized technical rules for the design of construction works which, in a first stage, would serve as an alternative to the national rules in force in the Member States and, ultimately, would replace them.

For fifteen years, the Commission, with the help of a Steering Committee with Representatives of Member States, conducted the development of the Eurocodes programme, which led to the first generation of European codes in the 1980's.

In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of an agreement between the Commission and CEN, to transfer the preparation and the publication of the Eurocodes to the CEN through a series of Mandates, in order to provide them with a future status of European Standard (EN). This links de facto the Eurocodes with the provisions of all the Council's Directives and/ or Commission's Decisions dealing with European standards (e.g. the Council Directive 89/106/EEC on construction products - CPD - and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and equivalent EFTA Directives initiated in pursuit of setting up the internal market).

Agreement between the Commission of the European Communities and the European Committee for Standardisation (CEN) concerning the work on EUROCODES for the design of building and civil engineering works (BC/CEN/03/89).

The Structural Eurocode programme comprises the following standards generally consisting of a number of Parts:

EN1990	Eurocode: Basis of structural design
EN1991	Eurocode 1: Actions on structures
EN1992	Eurocode 2: Design of concrete structures
EN1993	Eurocode 3: Design of steel structures
EN1994	Eurocode 4: Design of composite steel and concrete structures
EN1995	Eurocode 5: Design of timber structures
EN1996	Eurocode 6: Design of masonry structures
EN1997	Eurocode 7: Geotechnical design
EN1998	Eurocode 8: Design of structures for earthquake resistance
EN1999	Eurocode 9: Design of aluminium structures

Eurocode standards recognise the responsibility of regulatory authorities in each Member State and have safeguarded their right to determine values related to regulatory safety matters at national level where these continue to vary from State to State.

Status and field of application of Eu ocodes

The Member States of the EU and EFTA recognise that EUROCODES serve as reference documents for the following purposes:

- as a means to prove compliance of building and civil engineering works with the essential requirements of Council Directive 89/106/EEC, particularly Essential Requirement N°1 -Mechanical resistance and stability - and Essential Requirement N°2 - Safety in case of fire;
- as a basis for specifying contracts for construction works and related engineering services;
- as a framework for drawing up harmonised technical specifications for construction products (ENs and ETAs)

The Eurocodes, as far as they concern the construction works themselves, have a direct relationship with the Interpretative Documents²²⁾ referred to in Article 12 of the CPD, although they are of a different nature from harmonised product standards³³⁾. Therefore, technical aspects arising from the Eurocodes work need to be adequately considered by CEN Technical Committees and/or EOTA Working Groups working on product standards with a view to achieving full compatibility of these technical specifications with the Eurocodes.

The Eurocode standards provide common structural design rules for everyday use for the design of whole structures and component products of both a traditional and an innovative nature. Unusual forms of construction or design conditions are not specifically covered and additional expert consideration will be required by the designer in such cases.

National Standards implementing Eurocodes

The National Standards implementing Eurocodes will comprise the full text of the Eurocode (including any annexes), as published by CEN, which may be preceded by a National title page and National foreword, and may be followed by a National Annex.

The National Annex may only contain information on those parameters which are left open in the Eurocode for national choice, known as Nationally Determined Parameters, to be used for the design of buildings and civil engineering works to be constructed in the country concerned, i.e.:

²⁾ According to Art. 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in interpretative documents for the creation of the necessary links between the essential requirements and the mandates for harmonised ENs and ETAGs/ETAs.

According to Art. 12 of the CPD the interpretative documents shall:

a) give concrete form to the essential requirements by harmonising the terminology and the technical bases and indicating classes or levels for each requirement where necessary;

b) indicate methods of correlating these classes or levels of requirement with the technical specifications, e.g. methods of calculation and of proof, technical rules for project design, etc.;

c) serve as a reference for the establishment of harmonised standards and guidelines for European technical approvals.

The Eurocodes, de facto, play a similar role in the field of the ER 1 and a part of ER 2.

- values and/or classes where alternatives are given in the Eurocode,
- values to be used where a symbol only is given in the Eurocode,
- country specific data (geographical, climatic, etc), e.g. snow map,
- the procedure to be used where alternative procedures are given in the Eurocode.

It may also contain:

- decisions on the application of informative annexes,
- references to non-contradictory complementary information to assist the user to apply the Eurocode.

Links between Eurocodes and harmonised technical specifications (ENs and ETAs) for products

There is a need for consistency between the harmonised technical specifications for construction products and the technical rules for works⁴⁾. Furthermore, all the information accompanying the CE Marking of the construction products which refer to Eurocodes should clearly mention which Nationally Determined Parameters have been taken into account.

Additional information specific to EN1993-4-1

EN 1993-4-1 gives design guidance for the structural design of silos.

EN 1993-4-1 gives design rules that supplement the generic rules in the many parts of EN 1993-1.

EN 1993-4-1 is intended for clients, designers, contractors and relevant authorities.

EN 1993-4-1 is intended to be used in conjunction with EN 1990, with EN 1991-4, with the other Parts of EN 1991, with EN 1993-1-6 and EN 1993-4-2, with the other Parts of EN 1993, with EN 1992 and with the other Parts of EN 1994 to EN 1999 relevant to the design of silos. Matters that are already covered in those documents are not repeated.

Numerical values for partial factors and other reliability parameters are recommended as basic values that provide an acceptable level of reliability. They have been selected assuming that an appropriate level of workmanship and quality management applies.

Safety factors for 'product type' silos (factory production) can be specified by the appropriate authorities. When applied to 'product type' silos, the factors in 2.9 are for guidance purposes only. They are provided to show the likely levels needed to achieve consistent reliability with other designs.

National Annex for EN1993-4-1

This standard gives alternative procedures, values and recommendations for classes with notes indicating where national choices may have to be made. Therefore the National Standard implementing EN 1993-4-1 should have a National Annex containing all Nationally Determined Parameters to be used for the design of buildings and civil engineering works to be constructed in the relevant country.

National choice is allowed in EN 1993-4-1 through:

- 2.2 (1)
- 2.2 (3)

⁴⁾ see Art.3.3 and Art.12 of the CPD, as well as clauses 4.2, 4.3.1, 4.3.2 and 5.2 of ID 1.

- 2.9.2.2 (3)
- 3.4 (1)
- 4.1.4 (2) and (4)
- 4.2.2.3 (6)
- 4.3.1 (6) and (8)
- 5.3.2.3 (3)
- 5.3.2.4 (10), (12) and (15)
- 5.3.2.5 (10) and (14)
- 5.3.2.6 (3) and (6)
- 5.3.2.8 (2)
- 5.3.3.5 (1) and (2)
- 5.3.4.3.2 (2)
- 5.3.4.3.3 (2) and (5)
- 5.3.4.3.4 (5)
- 5.3.4.5 (3)
- 5.4.4 (2), (3)b) and (3)c)
- 5.4.7 (3)
- 5.5.2 (3)
- 5.6.2 (1) and (2)
- 6.1.2 (4)
- 6.3.2.3 (2) and (4)
- A1 6.3.2.7 (4) A1
- 7.3.1 (4)
- 8.3.3 (4)
- 8.4.1 (6)
- 8.4.2 (5)
- 8.5.3 (3)
- 9.5.1 (3) and (4)
- 9.5.2 (5)
- 9.8.2 (1) and (2)
- A.2 (1) and (2)
- A.3.2.1 (6)
- A.3.2.2 (6)
- A.3.2.3 (2)
- A.3.3 (1), (2) and (3)
- A.3.4 (4)

1 General

1.1 Scope

- (1) Part 4.1 of Eurocode 3 provides principles and application rules for the structural design of steel silos of circular or rectangular plan-form, being free standing or supported.
- (2) The provisions given in this Part supplement modify or supersede the equivalent provisions given in EN 1993-1.
- (3) This part is concerned only with the requirements for resistance and stability of steel silos. For other requirements (such as operational safety, functional performance, fabrication and erection, quality control, details like man-holes, flanges, filling devices, outlet gates and feeders etc.), see the relevant standards.
- (4) Provisions relating to special requirements of seismic design are provided in EN 1998-4, which complements or adapts the provisions of Eurocode 3 specifically for this purpose.
- (5) The design of supporting structures for the silo are dealt with in EN 1993-1-1. The supporting structure is deemed to consist of all structural elements beneath the bottom flange of the lowest ring of the silo, see figure 1.1.
- (6) Foundations in reinforced concrete for steel silos are dealt with in EN 1992 and EN 1997.
- (7) Numerical values of the specific actions on steel silos to be taken into account in the design are given in EN 1991-4 Actions in Silos and Tanks.
- (8) This Part 4.1 does not cover:
 - resistance to fire:
 - silos with internal subdivisions and internal structures;
- AC1) silos with capacity less than 100 kN (10 tonnes); (AC1)
 - cases where special measures are necessary to limit the consequences of accidents.
- (9) Where this standard applies to circular planform silos, the geometric form is restricted to axisymmetric structures, but the actions on them may be unsymmetrical, and their supports may induce forces in the silo that are not axisymmetrical.

1.2 Normative references

This European Standard incorporates, by dated and undated reference, provisions from other standards. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to, or revisions of, any of these publications apply to the European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies.

EN 1090	Execution of steel structures;
A) EN 1990:2002	Eurocode – Basis of Structural Design; (A1
EN 1991	Eurocode 1: Actions on structures;
Part 1.1	Actions on structures – Densities, self-weight and imposed loads for buildings;
Part 1.2:	Actions on structures – Actions on structures exposed to fire;
Part 1.3:	Actions on structures – Snow loads;
Part 1.4:	Actions on structures – Wind loads;
Part 1.5:	Actions on structures – Thermal loads;