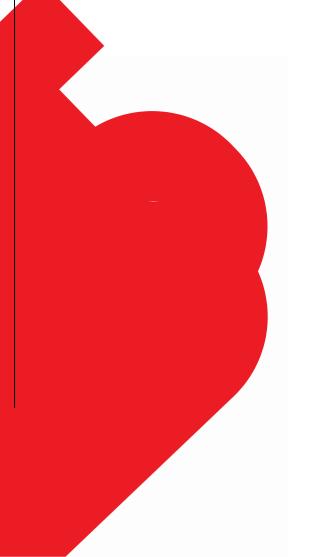
TR 48: 2015

SS 648: 2019


(ICS 01.140.30; 47.020)

TECHNICAL REFERENCE

Bunker mass flow metering

SINGAPORE STANDARD

Code of practice for bunker mass flow metering

TR 48: 2015 SS

648:2019

(ICS 01.140.30; 47.020)

TECHNICAL REFERENCE SINGAPORE STANDARD Code of practice for bunker mass flow metering

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

ISBN 978-981-4726-22-1

© Enterprise Singapore 2019

ISBN 978-981-48-9451-7

The content of this Singapore Standard was approved on 23 September 2019 by the Chemical Standards Committee (CSC) under the purview of the Singapore Standards Council.

First published, 2016 2019

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shell not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.
- 3. Compliance Vvith a SS or TR does not exempt users from any legal obligations.

CSC consists of the following members:

CSC consists of the following members.				
		Name	Representation	
Chairman	:	Dr Keith Carpenter	Individual Capacity	
Deputy Chairman	:	Er. Lucas Ng	Individual Capacity	
Secretaries	:	Ms Elane Ng	Standards Development Organisation @ Singapore Chemical Industry Council	
		Ms Rosmalinda Tay	Standards Development Organisation @ Singapore Chemical Industry Council	
Members	:	Mr Goh Tiak Boon	Individual Capacity	
		Prof Alfred Huan	Individual Capacity	
		Mr Khong Beng Wee	Individual Capacity	
		Mr Terence Koh	Singapore Chemical Industry Council Limited	
		Dr Leong Kwai Yin	Individual Capacity	
		Dr Thomas Liew	National Metrology Centre	
		Mr Lim Eng Kiat	Individual Capacity	
		Mdm Jaime Lim	Ministry of Manpower	
		Mr Lim Kian Chye / Mr Ng Eng Fu	Housing & Development Board	
		Prof Loh Kian Ping	National University of Singapore	
		Dr Loh Wah Sing	Individual Capacity	
		Ms Pamela Phua	Singapore Paint Industry Association	
		Mr Seah Khen Hee	Individual Capacity	
		A/Prof Timothy Tan	Nanyang Technological University	
		Dr Teo Tang Lin	Chemical Metrology Division, Health Sciences Authority	
		Mr Yao Yikai	Maritime and Port Authority of Singapore	
		Ms Suzanna Yap	National Environment Agency	
Co-opted Members	:	Ms Christina Loh	Individual Capacity	
-3		Mr Pitt Kwan Wah	Individual Capacity	

CSC sets up the Technical Committee on Bunkering to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Representation
Chairman	:	Mr Seah Khen Hee	Individual Capacity
Deputy Chairman	:	Mr Lee Wai Pong	Individual Capacity
Secretary	:	Ms Elane Ng	Standards Development Organisation @Singapore Chemical Industry Council
Members	:	Ms Maite Bolivar Klarup	Baltic and International Maritime Council
		Mr Dennis Chan	Singapore Chamber of Maritime Arbitration
		Mr Chew Siu Keong / Mr Loh Yuanhe	Maritime and Port Authority of Singapore
		Capt. Rahul Choudhuri	Veritas Petroleum Services (Asia) Pte Ltd
		Mr Timothy Cosulich	International Bunker Industry Association (Asia) Ltd
		Mr Darajit Daud	SGS Testing & Control Services Singapore Pte Ltd
		Mr Md Elfian Harun	The International Association of Independent Tanker Owners
		Mr Kenneth Kee	Society of Naval Architects and Marine Engineers Singapore
		Ms Samantha Leow	ExxonMobil Asia Pacific Pte Ltd
		Capt. Say Eng Sin	Singapore Nautical Institute
		Mr Roger Tan	Shell Eastern Trading Pte Ltd
		Mr Thiang Cheong Sheng	Singapore Shipping Association
		Mr Wu Jian	National Metrology Centre
		Ms Caroline Yang	Singapore Shipping Association
Co-opted Members	:	Mr Desmond Chong	Individual Capacity
		Mr Simon Neo	Individual Capacity
		Mr Darrick Pang	Individual Capacity
		Capt. Yoon Peng Kwan	Individual Capacity

The Technical Committee sets up Working Group on Mass Flow Metering to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

Name

Co-Convenors : Capt. Yoon Peng Kwan

Mr Alan Lim*

Members : Mr Mohamed Abdenbi

Mr Peter Beekhuis Mr Mathews George Mr Naveen Hegde Mr Dennis Ho

Mr Jens Maul Jorgensen

Mr Sherman Lee Ms Samantha Leow

Members : Mr Lim Yong Seng

Mr Jony Ling*
Mr Loh Yuanhe
Mr Bhavin Mehta
Capt. Hoque Mominul

Mr Simon Neo
Mr Darrick Pang
Mr Dennis Sim
Mr Roger Tan

Mr Thiang Cheong Sheng

Mr Wu Jian Mr Andrew Yap* Ms Celeste Yeong

The organisations in which the experts of the Working Group are involved are:

Emerson Process Management Marine Solutions Singapore Pte Ltd

Endress+Hauser (S.E.A.) Pte Ltd

Enterprise Singapore

ExxonMobil Asia Pacific Pte Ltd

Krohne (South East Asia) Pte Ltd

Maersk Oil Trading Singapore Pte Ltd

Maritec Pte Ltd

Maritime and Port Authority of Singapore

Metcore International Pte Ltd

National Metrology Centre

Ocean Tankers Pte Ltd

Oldendorff Carriers GmbH & Co.

Pacific International Lines Pte Ltd

Peninsula Petroleum Limited

Piroj International Pte Ltd

Sentek Marine & Trading Pte Ltd

SGS Testing & Control Services Singapore Pte Ltd

Shell International Eastern Trading Company

Sinanju Tankers Pte Ltd

Veritas Petroleum Services (Asia) Pte Ltd

^{*}Served till May 2019.

Contents

		Page
Fo	preword	5 7
0 1 2 3 4	Introduction Scope Normative references Terms and definitions Abbreviations	69 69 710 710
5	General requirements (safety, health and the environment)	17 14
6	Traceability and calibration Metrological requirements	17 14 17
7	System integrity requirements	16
8	Meter selection and installation requirements	20 19 23
9	Acceptance test requirements	21
10	Metering procedures	25 21 25
٩nn	exes	
4	Safety, health and the environment (normative)	33 38
3	Zero verification procedures (normative)	42
3 C	Summary table on Metrological and system integrity requirements (normative)	37 43
)	Example of ancillary device sealing (informative)	44
Ξ	Sealable bolts and nuts for blanks and flanges (normative)	45
F	Request for information checklist (informative)	38 46
) G	Typical schematic diagram of MFM system (for delivery) (informative)	40 48
	Markings on stamping plate of mass flow meter (informative)	41 49
Ξ	Sealable bolts and nuts for blanks and flanges (normative)	42
]	Acceptance test requirements (normative)	43 50
↓ J	8-step approval process (normative)	47 54
K	Example of a test plan (informative)	48 55
] L	Competency and responsibility of test team members (normative)	51 58
	Schematic description of an example of acceptance test (informative)	52 59
- N	MFM system acceptance test records (normative)	56 62
₩ O	Example of bunker requisition form (mass flow metering) (informative)	63 70
¥ P	Example of mass flow metering system seals checklist (informative)	64 71
	Example of meter reading record form (delivery) (informative)	65 72
	Bunker delivery note (BDN) (normative)	66 73
	Example of bunker metering ticket (informative)	67 74
₹T	Example of a survey time log (informative)	68 75

		Page
S U	Example of a statement of fact (informative)	69 76
Ŧ	Example of a pre-survey vessel acknowledgement (informative)	70
Ħ	Example of a vessel measurement report (informative)	71
¥	Example of a gauging ticket (informative)	72
₩∨	Bunkering pre-delivery safety checklist (informative)	73 77
× W	Sampling (normative)	75 79
¥Χ	Example of a sample label (informative)	81 84
Υ	Responsibilities of bunker surveyor (normative)	85
Z	Example of meter totaliser log (informative)	82 86
AA	Examples of note of protest (informative)	83 87
AB	Mass flow metering bunker claims (MFMBC) procedure (informative)	<mark>85</mark> 89
AC	Resolution of disputes (informative)	87 91
AD	Singapore bunker claims procedure (SBC terms) (informative)	<mark>88</mark> 92
AE	Schematic diagrams of multi meter set up (informative)	97
Table	S	
1	Uncertainty budget table	15 19
2	Size of reducers and adaptors	30 34
G I.1	Representative samples	45 52
Figure	es es	
1	Application of MFM bunkering requirements	9
A.1	Examples of hand signals for bunkering communication	34 39
D.1	Example of sealed pressure transmitter (instrument)	44
Ę E.1	Sealable bolt and nut	4 2
= E.2	Example of sealed pipe blank	45 <mark>42</mark> 45
<mark>¥</mark> W.1	Design of sampling equipment—Example 1	78 81
X.2	Design of sampling equipment — Example 2	79
X.3 W	.2 Example of design of sample bottle neck and cap	80 82
AE.1	Example of a two MFMs installed in parallel (for same grade of bunker fuel)	97
AE.2	Example of a two MFMs installed separately (for different grade of bunker fuel)	98
Bibliod	uraphy	99

Foreword

This Technical Reference (TR) Singapore Standard was prepared by the Working Group (WG) on Mass Flow Metering appointed set up by the Technical Committee for on Bunkering under the purview of the Chemical Standards Committee (CSC).

This TR is based on the current knowledge, extensive field trials and experience gained in the new application of Coriolis standard was first developed as TR 48: 2015, "Technical Reference for bunker mass flow metering technology for the bunkering industry.". TR 48 was

This TR is a provisional standard made available for application over a period of two years. The aim is to use the experience gained to update the TR so that it can be adopted as a Singapore-Standard. Users of the TR are invited to provide feedback on its technical content, clarity and ease of use. Feedback can be submitted using the form provided in the TR. At the end of the two years, the TR will be reviewed, taking into account any feedback or other considerations, to further its development into a Singapore Standard-if found suitable.

The changes resulting from the review are as follows:

- Expanded the scope of the standard to cover 2020 compliant fuels such as distillate fuels;
- Included multi meter installation;
- Enhanced zero verification procedure;
- Provided better clarity on the role of bunker surveyors.

In preparing this TR standard, reference was made to the following standards publications:

American Petroleum Institute Manual of Petroleum Measurement Standards

API MPMS 5.6:2002(2008) Measurement of liquid hydrocarbons by Coriolis meters

American Society of Mechanical Engineers

ASME MFC-11:2006 (R2014) Measurement of fluid flow by means of Coriolis mass flow

meters

International Organization for Standardization

ISO 10790:19992015 Measurement of fluid flow in closed conduits – Guidance to the

selection, installation and use of Coriolis meters flowmeters

(mass flow, density and volume flow measurements)

ISO/IEC 17025:2017 General requirements for the competence of testing and

calibration laboratories

Bureau International des Poids et Mesures

Joint Committee for Guides in International vocabulary of metrology – Basic and general

Metrology JCGM 200:2012 concepts and associated terms (VIM) 3rd Edition

International Organization of Legal Metrology

OIML D028:2004 Conventional value of the result of weighing in air

Reproduction of content from OIML D028: 2004 complies with OIML B11 - "Rules governing the translation, copyright and distribution of OIML Publications"

Some of the definitions in Clause 3 were reproduced from the above publications with permission from the respective organisations as indicated in brackets after the definitions. All rights are reserved by the organisations.

Acknowledgement is made for the use of information from the above publications.