SS 555:Part 3:2018+A1:2020 IEC 62305-3:2010, MOD

(ICS 29.020; 91.120.40)

SINGAPORE STANDARD Protection against lightning

- Part 3 : Physical damage to structures and life hazard

Incorporating Amendment No. 1

SS 555:Part 3:2018+A1:2020 IEC 62305-3:2010, MOD

(ICS 29.020; 91.120.40)

SINGAPORE STANDARD

Protection against lightning

- Part 3 : Physical damage to structures and life hazard

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© Enterprise Singapore 2018

ISBN 978-981-48-3503-9

The content of this Singapore Standard was approved on 13 July 2018 by the Electrical and Electronic Standards Committee (EESC) under the purview of the Singapore Standards Council.

First published, 2010 First revision, 2018

EESC consists of the following members:

		Name	Capacity
Chairman	:	Er. Peter Leong Weng Kwai	Individual Capacity
Deputy Chairman	:	Mr Andrew Chow Dr Kang Cheng Guan	Individual Capacity Energy Market Authority
Advisor	:	Mr Renny Yeo Ah Kiang	Individual Capacity
Secretary	:	Mr Jason Low	Enterprise Singapore
Members	:	Dr Ashwin Khambadkone Dr Chua Sze Wey Mr Michael Goh Chye Soon Assoc Prof Gooi Hoay Beng Er. Hashim Bin Mansoor Mr Koh Liang Hock Er. Kwang Cheok Sen Er. Lim Say Leong Er. Ling Shiang Yun Er. Kenneth Liu Mr Ng Soon Lee Mr Sim Wee Meng Mr Tan Beng Koon SAC Christopher Tan Eng Kiong Er. Tan Hak Khoon Er. Joseph Toh Siaw Hui	National University of Singapore Agency for Science, Technology and Research Singapore Electrical Contractors and Licensed Electrical Workers Association Nanyang Technological University Building and Construction Authority SP Group Housing & Development Board Individual Capacity Association of Consulting Engineers Singapore Individual Capacity TUV SUD PSB Pte Ltd Land Transport Authority Singapore Manufacturing Federation Singapore Civil Defence Force Individual Capacity The Institution of Engineers, Singapore
		Mr Justin Wu Chuyou Mr Andrew Yap	National Environment Agency Enterprise Singapore
		Mr Nelson Yeap	Singapore Electrical Trades Association

EESC sets up the Technical Committee on Buildings Facilities and Services to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Capacity
Chairman	:	Er. Kenneth Liu	Individual Capacity
Deputy Chairman	:	Er. Hashim Bin Mansoor	Building and Construction Authority
Secretary	:	Mr Allan Koh	Enterprise Singapore
Members	:	Mr Cai Lin Fan	Land Transport Authority
		Mr Chua Kian Chong	Energy Market Authority
		Mr David Goh King Siang	Singapore Manufacturing Federation
		Er. Ken Jung Gee Keong	Singapore Electrical Contractors and Licensed Electrical Workers Association
		Mr K. Seshadri	Individual Capacity
		Er. Adeline Koh	Association of Consulting Engineers Singapore
		Mr Benedict Koh Yong Pheng	Fire Safety Managers' Association (Singapore)
		Mr Ng Eng Sin	JTC Corporation
		Mr Pang Tong Teck	Singapore Civil Defence Force
		Dr Pritam Das	National University of Singapore
		Mr Sim Kooi Chuan	Singapore Institute of Architects
		Assoc Prof So Ping Lam	Nanyang Technological University
		Er. Tan Kok Koon	Housing & Development Board
		Dr Zhou Yi	The Institution of Engineers, Singapore

The Technical Committee sets up the Working Group on Lightning Protection to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

		Name
Convenor	:	Er. Prof. Liew Ah Choy
Deputy Convenor	:	Er. Chua Hian Koon
Secretaries	:	Ms Karen Tan Ms Aruna Charukesi Palaninathan
Members	:	Mr Cheong Weng Yip Mr Foo Lian Choon Mr Koh Nguang Siah Er. Lim Kwee Guan Er. Ling Teong Hui Patrick Er. Loh Teck Liang Darrick Mr Mah King Kheong Ms Mavis Ng Mr Seoh Zhi Wen Assoc Prof So Ping Lam Er. Tan Keng Swee

Members : Er. Teh Siaw Peng Mr Yeo Peck Chian

The organisations in which the experts of the Working Group are involved are:

Association of Consulting Engineers Singapore Building and Construction Authority Changi Airport Group (Singapore) Pte Ltd Defence Science and Technology Agency DSO National Laboratories Housing & Development Board Nanyang Technological University National Environment Agency National University of Singapore Nanyang Technological University PSA Corporation Ltd Singapore Manufacturing Federation SP Group The Institution of Engineers, Singapore

CONTENTS

NA	TION	AL FOR	EWORD	10
FO	REW	ORD		12
INT	ROD	UCTION	۷	14
1	Scor)e		15
2			eferences	
3			Jefinitions	
4	-		otection system (LPS)	
	4.1		of LPS	
	4.2	-	n of the LPS	
-	4.3		nuity of steelwork in reinforced concrete structures	
5		-	ntning protection system	
	5.1		al	
		5.1.1	Application of an external LPS	
		5.1.2	Choice of external LPS	
		5.1.3	Use of natural components	
	5.2		mination systems	
		5.2.1	General	
		5.2.2	Positioning	
		5.2.3	Air-terminations against flashes to the side of tall structures	
		5.2.4	Construction	
		5.2.5	Natural components	
	5.3		conductor systems	
		5.3.1	General	
		5.3.2	Positioning for an isolated LPS	
		5.3.3	Positioning for a non-isolated LPS	
		5.3.4	Construction	
		5.3.5	Natural components	
		5.3.6	Test joints	
	5.4		termination system	
		5.4.1	General	
		5.4.2	Earthing arrangement in general conditions	
		5.4.3	Installation of earth electrodes	
		5.4.4	Natural earth electrodes	
	5.5	•	onents	
		5.5.1	General	
		5.5.2	Fixing	
		5.5.3	Connections	
	5.6		als and dimensions	
		5.6.1	Materials	
		5.6.2	Dimensions	31

6	Interr	al lightr	ning protection system	.33
	6.1	Genera	۱	.33
	6.2	Lightnir	ng equipotential bonding	.34
		6.2.1	General	.34
		6.2.2	Lightning equipotential bonding for metal installations	.34
		6.2.3	Lightning equipotential bonding for external conductive parts	
		6.2.4	Lightning equipotential bonding for internal systems	
		6.2.5	Lightning equipotential bonding for lines connected to the structure to be protected.	
	6.3	Electric	al insulation of the external LPS	
		6.3.1	General	.37
		6.3.2	Simplified approach	.38
		6.3.3	Detailed approach	.38
7	Maint	enance	and inspection of an LPS	.39
	7.1	Genera	۱	.39
	7.2	Applica	tion of inspections	.39
	7.3	Order c	of inspections	.39
	7.4		nance	
8	Prote	ction me	easures against injury to living beings due to touch and step voltages	.39
	8.1	Protect	ion measures against touch voltages	.39
	8.2		ion measures against step voltages	
			ive) Positioning the air-termination system	
			ive) Minimum cross-section of the entering cable screen in order to avo ng	
Anr	ex C	(informa	tive) Evaluation of the separation distances	.47
			ive) Additional information for LPS in the case of structures with a risk o	
Anr	iex E ((informa	tive) Guidelines for the design, construction, maintenance and inspection systems	on
	Bibliography			
טוס	nograp	лту		170
Fig	ure 1 -	- Protec	tion angle corresponding to the class of LPS	.23
Fig	ure 2 -	- Loop i	n a down-conductor	.26
Fig	ure 3 -	- Minimu	um length I ₁ of each earth electrode according to the class of LPS	.28
Fig	ure A.	1 – Volu	me protected by a vertical air-termination rod	.41
Fig	ure A.	2 – Volu	me protected by a vertical air-termination rod	.42
Fig	ure A.:	3 – Volu	me protected by a wire air-termination system	.42
			me protected by isolated wires combined in a mesh according to the method and rolling sphere method	.43
Fig	ure A.	5 – Volu	Ime protected by non-isolated wires combined in a mesh according to the difference of the protection angle method	Э
			ign of an air-termination system according to the rolling sphere method	
-			les of coefficient k_c in the case of a wire air-termination system	
			les of coefficient $k_{\rm c}$ in the case of multiple down-conductors system	

Figure C.3 – Values of coefficient k_c in the case of a sloped roof with air-termination
on the ridge
Figure C.4 – Examples of calculation of the separation distance in the case of multiple down-conductors with an interconnecting ring of the down-conductors at each level
Figure C.5 – Values of coefficient $k_{\rm C}$ in the case of a meshed air-termination system, with a
multiple down-conductors system
Figure E.1 – LPS design flow diagram61
Figure E.2 – LPS design for a cantilevered part of a structure
Figure E.3 – Measuring the overall electrical resistance67
Figure E.4 – Equipotential bonding in a structure with a steel reinforcement
Figure E.5 – Typical methods of joining reinforcing rods in concrete (where permitted)71
Figure E.6 – Example of clamps used as joints between reinforcing rods and conductors \dots 72
Figure E.7 – Examples for connection points to the reinforcement in a reinforced concrete wall
Figure E.8 – Use of metallic facade as natural down-conductor system and connection of facade supports
Figure E.9 – Connection of the continuous strip windows to a metal facade covering78
Figure E.10 – Internal down-conductors in industrial structures80
Figure E.11 – Installation of bonding conductors in reinforced concrete structures and flexible bonds between two reinforced concrete parts
Figure E.12 – Protection angle method air-termination design for different heights according to Table 2
Figure E.13 – Isolated external LPS using two isolated air-termination masts designed according to the protection angle air-termination design method
Figure E.14 – Isolated external LPS using two isolated air-termination masts, interconnected by horizontal catenary wire
Figure E.15 – Example of design of an air-termination of a non-isolated LPS by air- termination rods
Figure E.16 – Example of design of an air-termination of a non isolated LPS by a horizontal wire according to the protection angle air-termination design method90
Figure E.17 – Protected volume of an air- termination rod on a sloped surface using the protection angle design method91
Figure E.18 – Design of an LPS air-termination conductor network on a structure with complicated shape
Figure E.19 – Design of an LPS air-termination according to the protection angle method, mesh method and general arrangement of air-termination elements
Figure E.20 – Space protected by two parallel air-termination horizontal wires or two air-termination rods ($r > h_t$)94
Figure E.21 – Three examples of design of non-isolated LPS air-termination according to the mesh method air-termination design
Figure E.22 – Four examples of details of an LPS on a structure with sloped tiled roofs98
Figure E.23 – Air-termination and visually concealed conductors for buildings less than 20 m high, with sloping roofs
Figure E.24 – Construction of an LPS using natural components on the roof of
the structure

Figure E.25 – Positioning of the external LPS on a structure made of isolating material e.g. wood or bricks with a height up to 60 m with flat roof and with roof fixtures102
Figure E.26 – Construction of air-termination network on a roof with conductive covering where puncturing of the covering is not acceptable103
Figure E.27 – Construction of external LPS on a structure of steel-reinforced concrete using the reinforcement of the outer walls as natural components
Figure E.28 – Example of an air-termination stud used on car park roofs105
Figure E.29 – Air-termination rod used for protection of a metallic roof fixture with electric power installations which are not bonded to the air-termination system
Figure E.30 – Method of achieving electrical continuity on metallic parapet capping107
Figure E.31 – Metallic roof fixture protected against direct lightning interception, connected to air-termination system110
Figure E.32 – Examplesof lightning protection of a house with a TV antenna113
Figure E.33 – Installation of lightning protection of metallic equipment on a roof against a direct lightning flash
Figure E.34 – Connection of natural air-termination rod to air-termination conductor116
Figure E.35 – Construction of the bridging between the segments of the metallic facade plates
Figure E.36 – Installation of external LPS on a structure of insulating material with different roof levels
Figure E.37 – Five examples of geometry of LPS conductors
Figure E.38 – Construction of an LPS using only two down-conductors and foundation earth electrodes
Figure E.39 – Four examples of connection of earth-termination to the LPS of structures using natural down-conductors (girders) and detail of a test joint
Figure E.40 – Construction of foundation earth ring for structures of different foundation design
Figure E.41 – Two examples of vertical electrodes in type A earthing arrangement
Figure E.42 – Meshed earth-termination system of a plant133
Figure E.43 – Example of an equipotential bonding arrangement140
Figure E.44 – Example of bonding arrangement in a structure with multiple point entries of external conductive parts using a ring electrode for interconnection of bonding bars141
Figure E.45 – Example of bonding in the case of multiple point entries of external conductive parts and an electric power or communication line using an internal ring conductor for interconnection of the bonding bars
Figure E.46 – Example of bonding arrangement in a structure with multiple point entries of external conductive parts entering the structure above ground level
Figure E.47 – Directions for calculations of the separation distance, <i>s</i> , for a worst case lightning interception point at a distance <i>l</i> from the reference point according to 6.3145

Table 1 – Relation between lightning protection levels (LPL) and class of LPS (see IEC 62305-1)	19
Table 2 – Maximum values of rolling sphere radius, mesh size and protection angle corresponding to the class of LPS	22
Table 3 – Minimum thickness of metal sheets or metal pipes in air-termination systems	24
Table 4 – Typical preferred values of the distance between down-conductors according to the class of LPS	26
Table 5 – LPS materials and conditions of use	30
Table 6 – Material, configuration and minimum cross-sectional area of air-termination conductors, air-termination rods, earth lead-in rods and down-conductors	32
Table 7 – Material, configuration and minimum dimensions of earth electrodes	33
Table 8 – Minimum dimensions of conductors connecting different bonding bars or connecting bonding bars to the earth-termination system	35
Table 9 – Minimum dimensions of conductors connecting internal metal installations to the bonding bar	35
Table 10 – Isolation of external LPS – Values of coefficient k _i	37
Table 11 – Isolation of external LPS – Values of coefficient <i>k</i> _m	37
Table 12 – Isolation of external LPS – Approximated values of coefficient $k_{\rm c}$	38
Table B.1 – Cable length to be considered according to the condition of the screen	46
Table E.1 – Suggested fixing centres	97
Table E.2 – Maximum period between inspections of an LPS	147

National Foreword

This Singapore Standard was prepared by the Working Group on Lightning Protection appointed by the Technical Committee on Buildings Facilities and Services under the purview of EESC.

This is a revision of SS 555 – 'Code of practice for protection against lightning'. The revised SS 555 comprises the following parts under the general title 'Protection against lightning':

- Part 1: General principles
- Part 2 : Risk management
- Part 3 : Physical damage to structures and life hazard
- Part 4: Electrical and electronic systems within structures

The four parts replace the 2010 edition of the SS 555 series of standards.

SS 555 : Part 3 : 2018 is a modified adoption of IEC 62305-3 : 2010 (Edition 2.0), 'Protection against lightning – Physical damage to structures and life hazard', published by the International Electrotechnical Commission. It deals with the protection, in and around a structure, against physical damage and injury to living beings due to touch and step voltages.

The committee considered methods for artificially increasing the range of attraction of a lightning conductor but on the evidence available, was unable to make a recommendation. It was noted that none of the reference codes used in the drafting of this Code recommends the use of such methods. The codes referred to were IEC 62305 : 2010 Parts 1 to 4. In addition, there are no devices nor methods capable of modifying the natural weather phenomena to the extent that they can prevent lightning discharges. Lightning flashes to, or nearby, structures (or services connected to the structures) are hazardous to people, to the structures themselves, their contents and installations as well as to lines. This is why the application of lightning protection measures is essential.

Attention is drawn to the following:

- 1. Where appropriate, the words 'International Standard' shall be read as 'Singapore Standard'.
- 2. The references to International Standards shall be replaced by the following Singapore Standards:

International Standard	Corresponding Singapore Standard
IEC 62305	SS 555
IEC 62305-1	SS 555-1
IEC 62305-2	SS 555-2
IEC 62305-3	SS 555-3
IEC 62305-4	SS 555-4

- 3. The comma has been used throughout as a decimal marker whereas in Singapore Standards it is a practice to use a full point on the baseline as the decimal marker.
- 4. The <u>modifications</u> to IEC 62305-3 are given in <u>Annex ZA</u>. To facilitate identification, the affected text of the International Standard which is to be changed is indicated by a left marginal bar adjacent to it. In addition to the modifications to the IEC standard, the following two national annexes are included in this part of SS 555:
 - Annex ZB (normative) Protection of miscellaneous structures and property;
 - Annex ZC (informative) Precautions for personal safety.

Annex ZB in Part 1 of SS 555 provides information on Singapore's lightning intensity to give the user data for risk management calculation which is essential for the appropriate design of a lightning protection system.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROTECTION AGAINST LIGHTNING –

Part 3: Physical damage to structures and life hazard

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62305-3 has been prepared by IEC technical committee 81: Lightning protection.

This second edition cancels and replaces the first edition, published in 2006, and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- 1) Minimum thicknesses of metal sheets or metal pipes given in Table 3 for air-termination systems are assumed as not able to prevent hot-spot problems.
- 2) Steel with electro-deposited copper is introduced as material suitable for LPS.
- 3) Some cross-sectional areas of LPS conductors were slightly modified.
- 4) For bonding purposes, isolating spark gaps are used for metal installations and SPD for internal systems.
- 5) Two methods simplified and detailed are provided for evaluation of separation distance.

COPYRIGHT

- 6) Protection measures against injuries of living beings due to electric shock are considered also inside the structure.
- 7) Improved information for LPS in the case of structures with a risk of explosion are given in Annex D (normative).

This bilingual version (2012-06) corresponds to the monolingual English version, published in 2010-12.

The text of this standard is based on the following documents:

FDIS	Report on voting
81/372/FDIS	81/382/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

The French version of this standard has not been voted upon.

This publication has been drafted, as closely as possible, in accordance with the ISO/IEC Directives, Part 2.

A list of all the parts in the IEC 62305 series, under the general title *Protection against lightning*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

In the United States, based on the requirements of NFPA 780: Standard for the Installation of Lightning Protection Systems:2008 ^[1] ¹ and practical experience in the use of horizontal earth electrodes, the minimum length of horizontal earth electrodes is not required to be twice that required for vertical electrodes.

In France and Portugal:

- natural components cannot substitute as lightning protection components but may be used to complete/enhance the LPS;
- aluminium solid round diameters should be increased from 8 mm to 10 mm;
- stranded conductors cannot be used as down-conductors;
- diameter of solid round conductors should be increased from 16 mm to 18 mm;
- hot dip galvanized steel solid tape thickness should be increased from 2 mm to 3,5 mm.

In Russia the use of piping carrying and tanks containing readily-combustible or explosive materials as airtermination natural components or down-conductor natural components are not allowed in any case.

In Japan the minimum values of the cross-section are reduced from:

- 16 mm² to 14 mm² for copper and 25 mm² to 22 mm² for aluminium, for bonding conductors connecting different bonding bars and conductors connecting the bars to the earth-termination system;
- 6 mm² to 5 mm² for copper, 10 mm² to 8 mm² for aluminium and 16 mm² to 14 mm² for steel, for bonding conductors connecting internal metal installations to the bonding bars.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

¹ References in square brackets refer to the bibliography.

INTRODUCTION

This part of IEC 62305 deals with the protection, in and around a structure, against physical damage and injury to living beings due to touch and step voltages.

The main and most effective measure for protection of structures against physical damage is considered to be the lightning protection system (LPS). It usually consists of both external and internal lightning protection systems.

An external LPS is intended to

- a) intercept a lightning flash to the structure (with an air-termination system),
- b) conduct the lightning current safely towards earth (using a down-conductor system),
- c) disperse the lightning current into the earth (using an earth-termination system).

An internal LPS prevents dangerous sparking within the structure using either equipotential bonding or a separation distance (and hence electrical insulation) between the external LPS (as defined in 3.2) components and other electrically conducting elements internal to the structure.

Main protection measures against injury to living beings due to touch and step voltages are intended to:

- 1) reduce the dangerous current flowing through bodies by insulating exposed conductive parts, and/or by increasing the surface soil resistivity,
- 2) reduce the occurrence of dangerous touch and step voltages by physical restrictions and/or warning notices.

The type and location of an LPS should be carefully considered in the initial design of a new structure, thereby enabling maximum advantage to be taken of the electrically conductive parts of the structure. By doing so, design and construction of an integrated installation is made easier, the overall aesthetic aspects can be improved, and the effectiveness of the LPS can be increased at minimum cost and effort.

Access to the ground and the proper use of foundation steelwork for the purpose of forming an effective earth-termination may well be impossible once construction work on a site has commenced. Therefore, soil resistivity and the nature of the earth should be considered at the earliest possible stage of a project. This information is fundamental to the design of an earth-termination system and may influence the foundation design work for the structure.

Regular consultation between LPS designers and installers, architects and builders is essential in order to achieve the best result at minimum cost.

If lightning protection is to be added to an existing structure, every effort should be made to ensure that it conforms to the principles of this standard. The design of the type and location of an LPS should take into account the features of the existing structure.

PROTECTION AGAINST LIGHTNING –

Part 3: Physical damage to structures and life hazard

1 Scope

This part of IEC 62305 provides the requirements for protection of a structure against physical damage by means of a lightning protection system (LPS), and for protection against injury to living beings due to touch and step voltages in the vicinity of an LPS (see IEC 62305-1).

This standard is applicable to:

- a) design, installation, inspection and maintenance of an LPS for structures without limitation of their height,
- b) establishment of measures for protection against injury to living beings due to touch and step voltages.

NOTE 1 Specific requirements for an LPS in structures dangerous to their surroundings due to the risk of explosion are under consideration. Additional information is provided in Annex D for use in the interim.

NOTE 2 This part of IEC 62305 is not intended to provide protection against failures of electrical and electronic systems due to overvoltages. Specific requirements for such cases are provided in IEC 62305-4.

NOTE 3 Specific requirements for protection against lightning of wind turbines are reported in IEC 61400-24 ^[2].

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60079-10-1:2008, *Explosive atmospheres – Part 10-1: Classification of areas – Explosive gas atmospheres*

IEC 60079-10-2:2009, Explosive atmospheres – Part 10-2: Classification of areas – Combustible dust atmospheres

IEC 60079-14:2007, Explosive atmospheres – Part 14: Electrical installations design, selection and erection

IEC 61557-4:2007, Electrical safety in low-voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 4: Resistance of earth connection and equipotential bonding

IEC 61643-1:2005, Low-voltage surge protective devices – Part 1: Surge protective devices connected to low-voltage power distribution systems – Requirements and tests

IEC 61643-21:2008, Low-voltage surge protective devices – Part 21: Surge protective devices connected to telecommunications and signalling networks – Performance requirements and testing methods

IEC 62305-1:2010, Protection against lightning – Part 1: General principles

IEC 62305-2:2010, Protection against lightning – Part 2: Risk management

IEC 62305-4:2010, Protection against lightning – Part 4: Electrical and electronic systems within structures