TR IEC/TS 62600-201 : 2020 IEC/TS 62600-201:2015, IDT

(ICS 27.140)

TECHNICAL REFERENCE

Marine energy – Wave, tidal and other water current converters

Part 201 : Tidal energy resource assessment and characterization

IEC/TS 62600-201:2015, IDT (ICS 27.140)

TECHNICAL REFERENCE

Marine energy – Wave, tidal and other water current converters

- Part 201 : Tidal energy resource assessment and characterization

Published by Enterprise Singapore

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 Enterprise Singapore Copyright © 2015 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either Enterprise Singapore, representing the IEC National Committee of Singapore, or the IEC. If you have any questions about the copyrights of Enterprise Singapore or the IEC or have an enquiry about obtaining additional rights to this publication, please contact Enterprise Singapore at: standards@enterprisesg.gov.sg for further information.

The content of this Technical Reference was approved on 30 October 2020 by the Electrical and Electronic Standards Committee (EESC) under the purview of the Singapore Standards Council.

First published, 2020

EESC consists of the following members:

		Name	Representation
Chairman	:	Mr Andrew Chow	Individual Capacity
Deputy Chairman	:	Dr Kang Cheng Guan	Energy Market Authority
Secretary	:	Mr Jason Low	Enterprise Singapore
Members	:	Ms Chiu Ya Ting	Enterprise Singapore
		Dr Chua Sze Wey	Agency for Science, Technology and Research
		Mr Michael Goh Chye Soon	Singapore Electrical Contractors and Licensed Electrical Workers Association
		Er. Kwang Cheok Sen	Housing & Development Board
		Er. Cedric Lee Say Teck	SP Group
		Mr Lee Wee Keong	Singapore Civil Defence Force
		Er. Peter Leong Weng Kwai	Individual Capacity
		Mr Bernard Lim	Singapore Manufacturing Federation
		Er. Lim Say Leong	Individual Capacity
		Er. Ling Shiang Yun	Association of Consulting Engineers Singapore
		Er. Kenneth Liu	Individual Capacity
		Mr Alan Ng Choon Hua	Singapore Electrical Trades Association
		Mr Ng Soon Lee	TÜV SÜD PSB Pte Ltd
		Dr Jimmy Peng Chih-Hsien	National University of Singapore
		Mr Sim Wee Meng	Land Transport Authority
		Er. Tan Hak Khoon	Individual Capacity
		Er. Tan Kee Chong	Building and Construction Authority
		Mr Roland Tan	National Environment Agency
		Assoc Prof Tang Yi	Nanyang Technological University
		Er. Joseph Toh Siaw Hui	The Institution of Engineers, Singapore

EESC set up the Technical Committee on Power System and Utilisation to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Representation
Chairman	:	Er. Tan Hak Khoon	Individual Capacity
Deputy Chairman	:	Er. Tan Chong Poh	Individual Capacity
Secretary	:	Mr Kok Yixiong	Enterprise Singapore
Members	:	Er. Chan Chee Hin	Ngee Ann Polytechnic
		Mr Chia Song Khoon	Land Transport Authority
		Er. Adeline Koh	Association of Consulting Engineers Singapore
		Prof Lalit Kumar Goel	Nanyang Technological University
		Er. Lee Wai Meng	Singapore Electrical Contractors and Licensed Electrical Workers Association
		Er. Lim Say Leong	Singapore Electrical Trades Association
		Dr Thomas Reindl	Solar Energy Research Institute of Singapore
		Mr Seng Chin Chye	Institute of Technical Education
		Er. Soh Swee Seng	Housing & Development Board
		Er. Sye Toh Siang Lin	JTC Corporation (since June 2020)
		Mr Tan Boon Chong	Singapore Manufacturing Federation
		Dr Teo Tee Hui	The Institution of Engineers, Singapore
		Er. Yee Peng Huey	JTC Corporation (until June 2020)

The Technical Committee set up the Working Group on Marine Energy to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

		Name
Convenor	:	Dr Srikanth Narasimalu
Secretaries	:	Mr Jason Low Mr Santhanakrishnan Mahesh Ramanathan
Members	:	Dr Michael Lochinvar Sim Abundo Mr Lester Bok Mr Darryl Chan Mr Rayleigh Chan Ms Liu Yao Mr Pallaniappan Ravindran Dr Harrif Santo Mr Tan Lee Heng Dr Pavel Tkalich Mr Wee Keng Hwee

The organisations in which the experts of the Working Group are involved are:

Energy Market Authority Energy Research Institute @ NTU Mako Energy Pte Ltd Mooreast Asia Pte Ltd Schottel Far East Pte Ltd Sembcorp Marine Ltd SP Group Sustainable Energy Association of Singapore Technology Centre for Offshore & Marine Singapore Tropical Marine Science Institute, National University of Singapore TÜV SÜD PSB Pte Ltd

CONTENTS

NA	TIONA	L FOREWORD	. 8
FC	DREWO	RD	. 9
IN	TRODU		11
1	Scop	е	12
2	Norm	native references	12
3		s and definitions	
4		ools, units and abbreviations	
т	4.1	Symbols and units	
	4.2	Abbreviations	
5		odology overview	
Ŭ	5.1	Project definition	
	5.1.1	•	
	5.1.2		
	5.1.3		
	5.2	Methodology	
6	Data	collection	
	6.1	Introduction	17
	6.2	Bathymetry	17
	6.3	Tidal characteristics	17
	6.3.1	General	17
	6.3.2	Assessment of data quality	18
	6.3.3	Tidal height	18
	6.3.4	Tidal current mobile survey	19
	6.3.5	5 5	
	6.4	Meteorological data	
	6.4.1	General	24
	6.4.2		
	6.4.3		
	6.5	Wave climate	
	0.0		25
	6.6.1		
	6.6.2		
_	6.7	Stratification, seawater density and sediment measurement	
7		el development and outputs	
	7.1	General	
	7.2	Model coverage, resolution and boundary conditions	
	7.2.1		
	7.2.2		
	7.2.3	,	
	7.2.4		
	7.3	Choice of model (including characteristics)	
	7.3.1	General considerations	∠8

7.3.2	Model selection	28
7.3.3	Model characteristics	29
7.4	Analysing data to provide model inputs, calibration and validation	30
7.4.1	Bathymetry interpolation	30
7.4.2	Currents	30
7.4.3	Meteorological analysis	30
7.4.4	Waves	31
7.4.5	Turbulence	31
7.4.6	Flow Structures / Eddies	32
7.4.7	Seawater density, salinity and temperature	32
7.4.8	Sediment	32
7.5	Model calibration / Validation	33
7.5.1	Model calibration	33
7.5.2	Model validation	34
7.6	Incorporating energy extraction	35
7.6.1	General	35
7.6.2	Methodology for incorporating energy extraction	35
7.6.3	Practical incorporation of energy extraction in modelling	36
8 Data	analysis and results presentation	37
8.1	General model result presentation	37
8.2	Generation of annual velocity distribution	38
8.2.1	General	38
8.2.2	Potential methodologies for simulating "missing" tidal constituents	38
8.2.3	Long-term model current predictions (harmonic analysis)	39
8.2.4	Results presentation	40
8.3	Velocity distribution curves – Joint probability distribution	41
9 Repo	orting of results	43
9.1	Purpose of reporting	43
9.2	Contents of the report	
Annex A	(informative) Calculation of TEC Annual Energy Production	
	General	
A.2	Individual TEC Annual Energy Production (AEP)	
A.3	Array Annual Energy Production	
	(informative) Guidelines for current profiler measurements	
B.1	General	
B.2	Instrument configuration	
B.3	Correcting for clock drift	
B.4	Depth quality control	
B.5	Velocity quality control	
	bhy	
Lisiogia	,	
Eigure 1	The effect of predicting tides with various constituents from Cook Inlat	

Alaska)
Figure 2 – Joint velocity and direction probability distribution, a location in Cook Inlet,	
Alaska42	2

Figure 3 – Example exceedance curve for velocity magnitude43	
Table 1 – Resource assessment stages14	
Table 2 – Model and field survey recommendations (Overview) 16	

National Foreword

This Technical Reference (TR) was prepared by the Working Group on Marine Energy set up by the Technical Committee on Power System and Utilisation under the purview of EESC.

This TR is identical with IEC/TS 62600-201:2015, "Marine energy – Wave, tidal and other water current converters – Part 201: Tidal energy resource assessment and characterization", published by the International Electrotechnical Commission.

NOTE 1 – Where appropriate, the words "Technical Specification" are read as "Technical Reference".

NOTE 2 – Reference to International Standards are replaced by applicable Singapore Standards/Technical References.

NOTE 3 – Where numerical values are expressed as decimals, the comma is read as a full point.

This TR is a provisional standard made available for application over a period of three years. The aim is to use the experience gained to update the TR so that it can be adopted as a Singapore Standard. Users of the TR are invited to provide feedback on its technical content, clarity and ease of use. Feedback can be submitted using the form provided in the TR. At the end of the three years, the TR will be reviewed, taking into account any feedback or other considerations, to further its development into a Singapore Standard if found suitable.

Attention is drawn to the possibility that some of the elements of this TR may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature Standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MARINE ENERGY – WAVE, TIDAL AND OTHER WATER CURRENT CONVERTERS –

Part 201: Tidal energy resource assessment and characterization

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62600-201, which is a technical specification, has been prepared by IEC technical committee 114: Marine energy – Wave, tidal and other water current converters.

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
114/142/DTS	114/151A/RVC

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62600 series, published under the general title *Marine energy* – *Wave, tidal and other water current converters*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International standard,
- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

This Technical Specification is for use by appropriately qualified and competent persons. The development of the tidal power industry is at an early stage and the significance of particular tidal energy resource characteristics is not well understood. This Technical Specification is intended to be updated as understanding of the resource and its response to power extraction becomes better understood. It is noted that it is presently particularly difficult to derive the uncertainty (within specified confidence limits) of the resource, given lack of field and model data for a statistically significant number of sites.

The purpose of this Technical Specification is to provide a uniform methodology that will ensure consistency and accuracy in the estimation, measurement, characterization and analysis of the theoretical tidal current resource at sites that could be suitable for the installation of an array of Tidal Energy Converters (TECs), together with defining a standardised methodology with which this resource can be described and reported. Application of the estimation, measurement and analysis techniques recommended in this Technical Specification will ensure that resource assessment is undertaken in a consistent and accurate manner. This Technical Specification presents techniques that are expected to provide fair and suitably accurate results that can be replicated by others.

The overall goal of the methodology is to enable calculation of the Annual Energy Production (AEP) for the proposed array of TECs at each TEC location in conjunction with IEC 62600-200.

In this Technical Specification, the theoretical tidal energy resource (undisturbed or disturbed by power extraction) is defined as the velocity probability distribution $f(U_i)$. For projects over c. 10 MW (circa 10 MW), the velocity probability distribution is calculated using hydrodynamic models that have been appropriately verified using measured data. The methodology for measuring the required data is also defined. For individual TECs within small projects of less than c. 10 MW, an alternative method which uses measured data at each TEC location may also be used to define the resource.

This Technical Specification describes only the aspects of the resource required to calculate AEP; e.g., it does not describe aspects of the resource required to evaluate design loads or to satisfy environmental regulations. Furthermore, this Technical Specification is not intended to cover every eventuality that may be relevant for any particular project. Therefore, this Technical Specification assumes that the user has access to, and reviews, other relevant IEC documentation before undertaking work (e.g., surveys and modelling) which could also satisfy other requirements.

MARINE ENERGY – WAVE, TIDAL AND OTHER WATER CURRENT CONVERTERS –

Part 201: Tidal energy resource assessment and characterization

1 Scope

This part of IEC 62600 establishes a system for analysing and reporting, through estimation or direct measurement, the theoretical tidal current energy resource in oceanic areas including estuaries (to the limit of tidal influence) that may be suitable for the installation of arrays of TECs.

It is intended to be applied at various stages of project lifecycle to provide suitably accurate estimates of the tidal resource to enable the arrays' projected annual energy production to be calculated at each TEC location in conjunction with IEC 62600-200.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61400-12-1, Wind turbines – Part 12-1: Power performance measurements of electricity producing wind turbines

IEC TS 62600-1, Marine energy – Wave, tidal and other water current converters – Part 1: Terminology

IEC TS 62600-200, Marine energy – Wave, tidal and other water current converters – Part 200: Electricity producing tidal energy converters – Power performance assessment

IHO (International Hydrographic Organisation), 2008, *Standards for Hydrographic Surveys. Special Publication No. 44. 5th Edition*

ICES, 2006, Guidelines for Multibeam Echosounder Data