

SINGAPORE STANDARD Qualification of parts printed by metal additive manufacturing

SS 666 : 2020 (ICS 25.030)

SINGAPORE STANDARD

Qualification of parts printed by metal additive manufacturing

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© Enterprise Singapore 2020

ISBN 978-981-49-2534-1

The content of this Singapore Standard was approved on 27 November 2020 by the Manufacturing Standards Committee (MSC) under the purview of the Singapore Standards Council.

First published, 2021

MSC consists of the following members:

		Name	Representation
Chairman	:	Dr John Yong	Individual Capacity
Deputy Chairman	:	Mr Brandon Lee	Individual Capacity
Secretary	:	Mr Lee Wei Guo	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Dr Gavin Chua Ms Fong Pin Fen Assoc Prof Goh Puay Guan Dr Andreas Hauser Mr Ho Chi Bao Mr Steven Koh Dr Jim Li Hui Hong Dr Lim Ee Meng Prof John Pang Dr Alpesh Patel Ms Joyce Seow Assoc Prof Arlindo Silva Mr Sze Thiam Siong	Science and Engineering Research Council Economic Development Board National University of Singapore TÜV SÜD Asia Pacific Pte Ltd Enterprise Singapore Singapore Precision Engineering and Technology Association Individual Capacity National Metrology Centre Nanyang Technological University McKinsey & Company Singapore Manufacturing Federation Singapore University of Technology and Design Testing, Inspection Certification Interest Group, Singapore Manufacturing Federation

MSC set up the Technical Committee on Additive Manufacturing to oversee the preparation of this standard. The Technical Committee consists of the following members:

		Name	Representation
Co- Chairmen	:	Prof Leong Kah Fai Mr Matthew Waterhouse	Individual Capacity Individual Capacity
Co- Secretaries	:	Mr Lee Wei Guo / Ms Melody Yu	Singapore Manufacturing Federation – Standards Development Organisation
Members	:	Prof Jerry Fuh Dr Ho Chaw Sing / Mr Marc Lee Sien Wee	National University of Singapore National Additive Manufacturing Innovation Cluster
		Dr Sastry Yagnanna Kandukuri	DNV GL Singapore
		Dr Samyeon Kim Mr Ko Hyun Woong	Singapore University of Technology and Design National Institute of Standards and Technology

Members	:	Dr Lee Jian Yuan	Nanyang Technological University, Rolls- Royce@NTU Corporate Lab
		Dr Alexander Liu	ASTM International
		Mr Sean Looi	Creatz3D Pte Ltd
		Mr Lu Xiao Hui	Makino Asia Pte Ltd
		Dr Sharon Nai	Singapore Institute of Manufacturing Technology
		Dr Gary Ng	Advanced Remanufacturing and Technology Centre
		Prof David Rosen	Singapore University of Technology and Design
		Ms Jen Soh	Enterprise Singapore
		Dr Su Liap Tat	Singapore Polytechnic
		Mr Desmond Tan	Nanyang Polytechnic
		ME6 Kaiser Tan	Singapore Armed Forces
		Mr Wu Wen Jin	Keppel Technology and Innovation Pte Ltd
		Mr Wu Yong Lin	Singapore Precision Engineering & Technology Association
		Dr Xu Baoxi	National Metrology Centre
		Dr Zhang Dan Qing	TÜV SÜD Asia Pacific Pte Ltd
		Dr Zheng Guoying	Singapore Technologies Engineering Ltd
		Mr Michael Zimmerman	Flowserve Corporation
Co-opted Member	:	Mr Jeffrey Loy	Individual Capacity

The Technical Committee sets up the Working Group on Military Additive Manufacturing to prepare this standard. The Working Group consists of the following experts who contribute in their *individual capacity*:

		Name
Co-Convenors	:	Dr Ho Chaw Sing Mr Ng Keok Boon ME7 Tan Mu Yen
Co- Secretaries	:	ME4 Yip Yi Hong Ms Melody Yu
Members	:	Prof Jerry Fuh Dr Sastry Yagnanna Kandukuri Mr Khong Chee Houe Dr Kim Samyeon ME6 Dr Reuben Lim Dr Alexander Liu Mr Sean Looi Prof Ng Bing Feng Mr Pee Yap Aik Dr Khalid Rafi Prof David Rosen ME6 Calvin Seah Mr Sze Thiam Siong

Members : ME6 Tan Kaiser Mr Kenneth Tan ME6 Tan Meng Hwee Mr Andrew Teo Mr Matthew Waterhouse Mr Wu Yong Lin Dr Xu Bao Xi

The organisations in which the experts of the Working Group are involved are:

3D Metalforge Pte Ltd ASTM International Creatz3D Pte Ltd DNV GL Singapore Nanyang Technological University National Metrology Centre National University of Singapore Setso Services Pte Ltd Singapore Armed Forces Singapore Centre for 3D Printing Singapore Precision Engineering and Technology Association Singapore Test Services Pte Ltd Singapore University of Technology and Design ST Engineering Land Systems Ltd ST Logistics Pte Ltd

Contents

Fore	eword	6
1	Scope	7
2	Normative references	7
3	Terms and definitions	9
4	Abbreviated terms	10
5	Part classification	11
6	Qualification of AM printed parts	14
Ann	ex	
A	Statistical analysis for deciding the number of test specimen	38
Tab	les	
1	Item classification for military applications	14
2	Existing standards for finished part properties with PBF	19
3	Test standards for metal AM powder	20
4	Process parameter categories for PBF-LB/M	26
5	Summary of requirements for AM process qualification	27
6	Test requirements for reference and test specimens for AM parts	32
7	Mechanical test standards for AM metal material	33
8	List of NDT test standards	36
9	NDT requirements (part level)	36
Figu	ires	
1	A chart for part and process selections based on design complexity and production volume after design feasibility check	11
2	Key areas of focus for qualification of an AM printed part	15
3	Qualification procedure of AM printed parts	16
4	AM process qualification procedure	18
5	NDT inspectability according to part complexity	35
Bibli	ography	41

Foreword

This Singapore Standard was prepared by the Working Group on Military Additive Manufacturing set up by the Technical Committee on Additive Manufacturing under the purview of MSC.

This standard provides users with a framework for qualification of additive manufacturing (AM) printed parts and processes during AM metal part production.

Potential users include AM design engineers, manufacturing engineers, maintenance engineers, industry associations, research institutions and government agencies.

Acknowledgement is made to the following organisations for their kind permission to reproduce their materials into this TR:

- 1. International Organization for Standardization, ISO/ASTM 52900:2015 Additive manufacturing – General principles – Terminology
- 2. Thales Alenia Space, figure in article "Large scale metal lattice structure for complex satellite part".

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "Mature Standards". Mature Standards will not be subject to further review, unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

Qualification of parts printed by metal additive manufacturing

1 Scope

This Singapore Standard provides users with a framework for qualification and certification of additive manufacturing (AM) printed part and process during AM metal part production. To produce consistent AM parts, there is a need to consider the aspects of raw material, machine, operator and parts. This standard is applicable to the powder bed fusion (PBF), especially powder bed fusion of metal using laser beam (PBF-LB/M).

This standard also specifies the part classification and qualification requirements for AM processes and parts. These classification and qualification requirements are divided into part classification, preprocess qualification for AM machine, in-process qualification for AM parts at specimen level and postprocess qualification for AM parts.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated reference, only the edition cited applies. For undated references, the latest edition of the referenced document applies.

ASME B46.1	Surface texture (surface roughness, waviness, and lay)
ASTM E1417 / E1417M	Standard practice for liquid penetrant testing
ASTM E1441	Standard guide for computed tomography (CT)
ASTM E1444	Standard practice for magnetic particle testing
ASTM E1570	Standard practice for fan beam computed tomographic (CT) examination
ASTM E2884	Standard guide for eddy current testing of electrically conducting materials using conformable sensor arrays
ASTM F2924	Standard specification for additive manufacturing titanium-6 aluminum-4 vanadium with powder bed fusion
ASTM F3001	Standard specification for additive manufacturing titanium-6 aluminum-4 vanadium ELI (extra low interstitial) with powder bed fusion
ASTM F3055	Standard specification for additive manufacturing nickel alloy (UNS N07718) with powder bed fusion
ASTM F3056	Standard specification for additive manufacturing nickel alloy (UNS N06625) with powder bed fusion
ASTM F3184	Standard specification for additive manufacturing stainless steel alloy (UNS S31603) with powder bed fusion
ASTM F3213	Standard for additive manufacturing – Finished part properties – Standard specification for cobalt-28 chromium-6 molybdenum via powder bed fusion
ASTM F3302	Standard for additive manufacturing – Finished part properties – Standard specification for titanium alloys via powder bed fusion
	7

ASTM F3318	Standard for additive manufacturing – Finished part properties – Specification for AISi10Mg with powder bed fusion – Laser beam
ASTM F3434	Guide for additive manufacturing – Installation/operation and performance qualification (IQ/OQ/PQ) of laser-beam powder bed fusion equipment for production manufacturing
ASTM G59	Standard test method for conducting potentiodynamic polarization resistance measurements
ISO 17296-3	Additive manufacturing – General principles – Part 3: Main characteristics and corresponding test methods
ISO 17296-4	Additive manufacturing – General principles – Part 4: Overview of data processing
ISO/ASTM 52900	Additive manufacturing – General principles – Terminology
ISO/ASTM 52901	Additive manufacturing – General principles – Requirements for purchased AM parts
ISO/ASTM 52904	Additive manufacturing – Process characteristics and performance: – Practice for metal powder bed fusion process to meet critical applications
ISO/ASTM 52921	Standard terminology for additive manufacturing – Coordinate systems and test methodologies
ISO/ASTM 52926-1	Additive manufacturing of metals – Qualification principles – Part 1: General qualification of machine operators
ISO/ASTM 52926-2	Additive manufacturing of metals – Qualification principles – Part 2: Qualification of machine operators for PBF-LB
ISO/ASTM 52926-3	Additive manufacturing of metals – Qualification principles – Part 3: Qualification of machine operators for PBF-EB
ISO/ASTM 52926-4	Additive manufacturing of metals – Qualification principles – Part 4: Qualification of machine operators for DED-LB
ISO/ASTM 52926-5	Additive manufacturing of metals – Qualification principles – Part 5: Qualification of machine operators for DED-Arc
ISO/ASTM 52941	Additive manufacturing – System performance and reliability – Acceptance tests for laser metal powder-bed fusion machines for metallic materials for aerospace application
ISO/ASTM 52942	Additive manufacturing – Qualification principles – Qualifying machine operators of laser metal powder bed fusion machines and equipment used in aerospace applications
MIL-STD-810G	Department of defense test method standard – Environmental engineering considerations and laboratory tests
MSFC-SPEC-3717 (effective date 18 October 2017)	Specification for control and qualification of laser powder bed fusion metallurgical processes
MSFC-STD-3716	Standard for additively manufactured spaceflight hardware by laser powder bed fusion in metals