Singapore Standard SS EN 1992-1-1:2008

Eurocode 2 : Design of concrete structures – Part 1-1 : General rules and rules for buildings

AMENDMENT NO. 1

December 2020

1. Modification to the National Foreword, Page v

In the section "National choices is allowed in EN 1992-1-1 through the following clauses", between "6.4.4 (1)" and "6.4.5 (3)", *add* "6.4.5 (1)".

2. Modification to 3.3.2, Properties, Page 42

In Paragraph (2)P, *replace* "strength to proof strength ($f_{pk}/f_{p0,1k}$)" with "strength to proof strength ($f_p / f_{p0,1k}$)".

3. Modification to 3.3.4, Ductility characteristics, Page 43

In Paragraph (5), replace " $f_{pk} / f_{p0,1k} \ge k$ " with " $(f_p / f_{p0,1})_k \ge k$ ".

4. Modification to 6.4.5, Punching shear resistance of slabs and column bases with shear reinforcement, Page 105

In Paragraph (1), replace:

"(1) Where shear reinforcement is required it should be calculated in accordance with Expression (6.52):

$$v_{\text{Rd,cs}} = 0,75 \, v_{\text{Rd,c}} + 1,5 \, (d/s_r) \, A_{\text{sw}} \, f_{\text{ywd,ef}} \, (1/(u_1 \, d)) \, \sin\alpha \tag{6.52}$$

where

is the area of one perimeter of shear reinforcement around the column [mm ²]	is the area of	one perimeter of	f shear reinforcement	around the column [mm ²]
--	----------------	------------------	-----------------------	--------------------------------------

 A_{sw}

sr is the radial spacing of perimeters of shear reinforcement [mm]

- $f_{ywd,ef}$ is the effective design strength of the punching shear reinforcement, according to $f_{ywd,ef} = 250 + 0.25 d \le f_{ywd}$ [MPa]
- *d* is the mean of the effective depths in the orthogonal directions [mm]

 α is the angle between the shear reinforcement and the plane of the slab

If a single line of bent-down bars is provided, then the ratio d/s_r in Expression (6.52) may be given the value 0,67."

with the following text:

"(1) Where shear reinforcement is required it should be calculated in accordance with Expression (6.52):

$$V_{\text{Rd,cs}} = 0.75 \ v_{\text{Rd,c}} + 1.5 \ (d \ / \ s_r) \ A_{\text{sw}} \ f_{\text{ywd,ef}} \left[1 \ / \ (u_1 \ d) \right] \sin \alpha \le k_{\text{max}} \cdot v_{\text{Rd,c}}$$
(6.52)

Singapore Standard SS EN 1992-1-1:2008 Amendment No. 1

where

- A_{sw} is the area of one perimeter of shear reinforcement around the column [mm²];
- sr is the radial spacing of perimeters of shear reinforcement [mm];
- $f_{ywd,ef}$ is the effective design strength of the punching shear reinforcement according to $f_{ywd,ef} = 250 + 0.25 d \le f_{ywd}$ [MPa];
- *d* is the mean of the effective depths in the orthogonal directions [mm];
- α is the angle between the shear reinforcement and the plane of the slab;
- $v_{\rm Rd,c}$ according to 6.4.4;
- k_{max} is the factor, limiting the maximum capacity that can be achieved by application of shear reinforcement.

NOTE — The value of k_{max} for use in a country may be found in its National Annex. The recommended value is 1,5.

If a single line of bent-down bars is provided, then the ratio d / s_r in Expression (6.52) may be given the value 0,67.".

5. Modification to 11.6.4.2, Punching shear resistance of slabs or column bases with shear reinforcement, Page 191

In Paragraph (1), replace the whole Expression (11.6.52) with the following one:

6. Modification to 12.6.5.2, Simplified design method for walls and columns, Page 197

Replace the whole Paragraph (1):

"(1) In absence of a more rigorous approach, the design resistance in terms of axial force for a slender wall or column in plain concrete may be calculated as follows:

$$N_{\rm Rd} = b \times h_{\rm W} \times f_{\rm cd,pl} \times \Phi \tag{12.10}$$

where

 $N_{\rm Rd}$ is the axial resistance

b is the overall width of the cross-section

- $h_{\rm W}$ is the overall depth of the cross-section
- Φ Factor taking into account eccentricity, including second order effects and normal effects of creep; see below

For braced members, the factor ϕ may be taken as:

$$\Phi = 1,14 \times (1 - 2e_{\text{tot}}/h_{\text{w}}) - 0,02 \times l_0/h_{\text{w}} \le (1 - 2 \times e_{\text{tot}}/h_{\text{w}})$$
(12.11)

where:

 $e_{tot} = e_0 + e_i$

Singapore Standard SS EN 1992-1-1:2008 Amendment No. 1

- eo is the first order eccentricity including, where relevant, the effects of floors (e.g. possible clamping moments transmitted to the wall from a slab) and horizontal actions;
- *e*_i is the additional eccentricity covering the effects of geometrical imperfections, see 5.2"

with the following text:

"(1) In absence of a more rigorous approach, the design resistance in terms of axial force for a slender wall or column in plain concrete may be calculated as follows:

(12.10)

$$N_{\text{Rd}} = b \cdot h_{\text{W}} \cdot f_{\text{cd,pl}} \cdot \Phi$$

where

 $N_{\rm Rd}$ is the axial resistance;

b is the overall width of the cross-section;

- $h_{\rm w}$ is the overall depth of the cross-section;
- Φ is the factor taking into account eccentricity, including second order effects; see below.

For braced members, the factor ϕ may be taken as:

$$\Phi = 1,14 \cdot (1 - 2 \cdot e_{\text{tot}} / h_{\text{w}}) - 0,02 \cdot l_0 / h_{\text{w}} \le 1 - 2 \cdot e_{\text{tot}} / h_{\text{w}}$$
(12.11)

where:

$$\boldsymbol{e}_{\text{tot}} = \boldsymbol{e}_0 + \boldsymbol{e}_i + \boldsymbol{e}_{\boldsymbol{\varphi}} \tag{12.12}$$

- e_0 is the first order eccentricity including, where relevant, the effects of floors (e.g. possible clamping moments transmitted to the wall from a slab) and horizontal actions. In determination of e_0 an equivalent first order end moment M_{0e} can be used, see 5.8.8.2 (2);
- e is the additional eccentricity covering the effects of geometrical imperfections, see 5.2;
- e_{ϕ} is the eccentricity due to creep.

In some cases, depending on slenderness, the end moment(s) can be more critical for the structure than the equivalent first order end moment M_{0e} . In such cases Expression (12.2) should be used.".

7. Modification to H.1.2, Bracing system without significant shear deformations, Page 215

In Paragraph (4), *replace* the whole Expression (H.4):

$$\xi = 7.8 \cdot \frac{n_s}{n_{s+1.6}} \cdot \frac{1}{1+0.7 \cdot k}$$
(H.4)"

with the following one:

"
$$\xi = 7.8 \cdot \frac{n_s}{n_s + 1.6} \cdot \frac{1}{1 + 3.9k}$$
 (H.4)"