

SS 555 : Part 1 : 2018+C1:2019 IEC 62305-1:2010, MOD

(ICS 29.020; 91.120.40)

SINGAPORE STANDARD Protection against lightning

– Part 1 : General principles

Incorporating Corrigendum No. 1

Published by

SS 555 : Part 1 : 2018+C1:2019 IEC 62305-1:2010, MOD (ICS 29.020; 91.120.40)

SINGAPORE STANDARD

Protection against lightning

- Part 1 : General principles

All rights reserved. Unless otherwise specified, no part of this Singapore Standard may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© IEC 2010 – All rights reserved © Enterprise Singapore 2018

ISBN 978-981-48-3501-5

This Singapore Standard was approved by Electrical and Electronic Standards Committee on behalf of the Singapore Standards Council on 13 July 2018.

First published, 2010 First revision, 2018

The Electrical and Electronic Standards Committee, appointed by the Standards Council, consists of the following members:

		Name	Capacity
Chairman	:	Er. Peter Leong Weng Kwai	Individual Capacity
Deputy Chairman	:	Mr Andrew Chow	Individual Capacity
		Dr Kang Cheng Guan	Energy Market Authonty
Advisor	:	Mr Renny Yeo Ah Kiang	Individual Capacity
Secretary	:	Mr Jason Low	Enterprise Singapore
Members	:	Dr Ashwin Khambadkone	National University of Singapore
		Dr Chua Sze Wey	Agency for Science, Technology and Research
		Mr Michael Goh Chye Soon	Singapore Electrical Contractors and Licensed Electrical Workers Association
		Assoc Prof Gooi Hoay Beng	Nanyang Technological University
		Er. Hashim Bin Mansoor	Building and Construction Authority
		Mr Koh Liang Hock	SP Group
		Er. Kwang Cheok Sen	Housing & Development Board
		Er. Lim Say Leong	Individual Capacity
		Er. Ling Shiang Yun	Association of Consulting Engineers Singapore
		Er. Kenneth Liu	Individual Capacity
		Mr Ng Soon Lee	TUV SUD PSB Pte Ltd
		Mr Sim Wee Meng	Land Transport Authority
		Mr Tan Beng Koon	Singapore Manufacturing Federation
		SAC Christopher Tan Eng Kiong	Singapore Civil Defence Force
		Er. Tan Hak Khoon	Individual Capacity
		Er. Joseph Toh Siaw Hui	The Institution of Engineers, Singapore
		Mr Justin Wu Chuyou	National Environment Agency
		Mr Andrew Yap	Enterprise Singapore
		Mr Nelson Yeap	Singapore Electrical Trades Association

The Technical Committee on Buildings Facilities and Services, appointed by the Electrical and Electronic Standards Committee and responsible for the preparation of this standard, consists of representatives from the following organisations:

		Name	Capacity
Chairman	:	Er. Kenneth Liu	Individual Capacity
Deputy Chairman	:	Er. Hashim Bin Mansoor	Building and Construction Authority
Secretary	:	Mr Allan Koh	Enterprise Singapore
Members	:	Mr Cai Lin Fan Mr Chua Kian Chong	Land Transport Authority Energy Market Authority
		Mr David Goh King Siang	Singapore Manufacturing Federation
		Er. Ken Jung Gee Keong	Singapore Electrical Contractors and Licensed Electrical Workers Association
		Mr K. Seshadri	Individual Capacity
		Er. Adeline Koh	Association of Consulting Engineers Singapore
		Mr Benedict Koh Yong Pheng	Fire Safety Managers' Association (Singapore)
		Mr Ng Eng Sin	JTC Corporation
		Mr Pang Tong Teck	Singapore Civil Defence Force
		Dr Pritam Das	National University of Singapore
		Mr Sim Kooi Chuan	Singapore Institute of Architects
		Assoc Prof So Ping Lam	Nanyang Technological University
		Er. Tan Kok Koon	Housing & Development Board
		Dr Zhou Yi	The Institution of Engineers, Singapore

The Working Group on Lightning Protection, appointed by the Technical Committee to assist in the preparation of this standard, comprises the following experts who contribute in their *individual capacity*:

Convenor Deputy	:	Er. Prof. Liew Ah Choy
Convenor	:	Er. Chua Hian Koon
Secretaries	:	Ms Karen Tan
		Ms Aruna Charukesi Palaninathan
Members	:	Mr Cheong Weng Yip
		Mr Foo Lian Choon
		Mr Koh Nguang Siah
		Er. Lim Kwee Guan
		Er. Ling Teong Hui Patrick
		Er. Loh Teck Liang Darrick
		Mr Mah King Kheong
		Ms Mavis Ng
		Mr Seoh Zhi Wen

Name

Members : Assoc Prof So Ping Lam Er. Tan Keng Swee Er. Teh Siaw Peng Mr Yeo Peck Chian

The organisations in which the experts of the Working Group are involved are:

Association of Consulting Engineers Singapore Building and Construction Authority Changi Airport Group (Singapore) Pte Ltd Defence Science and Technology Agency DSO National Laboratories Housing & Development Board Nanyang Technological University National Environment Agency National University of Singapore Nanyang Technological University PSA Corporation Ltd Singapore Manufacturing Federation SP Group The Institution of Engineers, Singapore

CONTENTS

NA	ΓΙΟΝΑ	AL FOREWORD	8
FO	REWC	DRD	10
INT	RODI	JCTION	12
1	Scop	e	.13
2	Norm	native references	13
3	Term	is and definitions	13
4	Light	ning current parameters	19
5	Dama	age due to lightning	20
	5.1	Damage to a structure	20
		5.1.1 Effects of lightning on a structure	20
		5.1.2 Sources and types of damage to a structure	21
	5.2	Types of loss	.22
6	Need	and economic justification for lightning protection	24
	6.1	Need for lightning protection	24
_	6.2	Economic justification of lightning protection	25
7	Prote	ection measures	25
	7.1	General	25
	7.2	Protection measures to reduce injury of living beings by electric shock	25
	1.3 7.4	Protection measures to reduce physical damage	20
	7.4 7.5	Protection measures selection	20
8	Basic	criteria for protection of structures	20
Ū	8 1	General	27
	8.2	Lightning protection levels (LPL)	27
	8.3	Lightning protection zones (LPZ)	
	8.4	Protection of structures	32
		8.4.1 Protection to reduce physical damage and life hazard	32
		8.4.2 Protection to reduce the failure of internal systems	32
Ann	iex A	(informative) Parameters of lightning current	34
Ann	iex B	(informative) Time functions of the lightning current for analysis purposes	45
Ann	iex C	(informative) Simulation of the lightning current for test purposes	50
Ann	iex D	(informative) Test parameters simulating the effects of lightning on LPS	
com	npone	nts	54
Ann	iex E	(informative) Surges due to lightning at different installation points	69
Bibl	iogra	phy	.82
Figu	ure 1 -	– Connection between the various parts of IEC 62305	.12
Figu	ure 2 -	 Types of loss and corresponding risks resulting from different types of 	. ·
dan	nage.	· · · · · · · · · · · · · · · · · · ·	24
Figu	ure 3 ·	– LPZ defined by an LPS (IEC 62305-3)	30
Figu	ure 4 -	– LPZ defined by an SPM (IEC 62305-4)	31

Figure A.1 – Definitions of impulse current parameters (typically $T_2 < 2 \text{ ms}$)	34
Figure A.2 – Definitions of long duration stroke parameters (typically 2 ms < T_{LONG} <1 s).	35
Figure A.3 – Possible components of downward flashes (typical in flat territory and to lower structures)	35
Figure A.4 – Possible components of upward flashes (typical to exposed and/or higher structures)	36
Figure A.5 – Cumulative frequency distribution of lightning current parameters (lines through 95 % and 5 % value)	41
Figure B.1 – Shape of the current rise of the first positive impulse	46
Figure B.2 – Shape of the current tail of the first positive impulse	46
Figure B.3 – Shape of the current rise of the first negative impulse	47
Figure B.4 – Shape of the current tail of the first negative impulse	47
Figure B.5 – Shape of the current rise of the subsequent negative impulses	48
Figure B.6 – Shape of the current tail of the subsequent negative impulses	48
Figure B.7 – Amplitude density of the lightning current according to LPL I	49
Figure C.1 – Example test generator for the simulation of the specific energy of the first positive impulse and the charge of the long stroke	51
Figure C.2 – Definition of the current steepness in accordance with Table C.3	52
Figure C.3 – Example test generator for the simulation of the front steepness of the first positive impulse for large test items	53
Figure C.4 – Example test generator for the simulation of the front steepness of the subsequent negative impulses for large test items	53
Figure D.1 – General arrangement of two conductors for the calculation of electrodynamic force	61
Figure D.2 – Typical conductor arrangement in an LPS	61
Figure D.3 – Diagram of the stresses <i>F</i> for the configuration of Figure D.2	62
Figure D.4 – Force per unit length F' along the horizontal conductor of Figure D.2	62
Table 1 – Effects of lightning on typical structures	20
Table 2 – Damage and loss relevant to a structure according to different points of strike of lightning	23
Table 3 – Maximum values of lightning parameters according to LPL	28
Table 4 – Minimum values of lightning parameters and related rolling sphere radius corresponding to LPL	29
Table 5 – Probabilities for the limits of the lightning current parameters	29
Table A.1 – Tabulated values of lightning current parameters taken from CIGRE (Electra No. 41 or No. 69) [3], [4]	38
Table A.2 – Logarithmic normal distribution of lightning current parameters – Mean μ and dispersion $\sigma_{ m log}$ calculated from 95 % and 5 % values from CIGRE (Electra No.	
41 or No. 69) ^{[3], [4]}	39
Table A.3 – Values of probability <i>P</i> as function of the lightning current <i>I</i>	40
Table B.1 – Parameters for Equation (B.1)	45
Table C.1 – Test parameters of the first positive impulse	51

Table C.2 – Test parameters of the long stroke5	51
Table C.3 – Test parameters of the impulses5	62
Table D.1 – Summary of the lightning threat parameters to be considered in the calculation of the test values for the different LPS components and for the different LPL5	55
Table D.2 – Physical characteristics of typical materials used in LPS components5	8
Table D.3 – Temperature rise for conductors of different sections as a function of W/R 5	8
Table E.1 – Conventional earthing impedance values Z and Z_1 according to the	
resistivity of the soil7	Ό
Table E.2 – Expected surge overcurrents due to lightning flashes on low-voltage systems .7	2
Table E.3 – Expected surge overcurrents due to lightning flashes on telecommunication systems	'3

National Foreword

This Singapore Standard was prepared by the Working Group on Lightning Protection appointed by the Technical Committee on Buildings Facilities and Services under the direction of the Electrical and Electronic Standards Committee.

This is a revision of SS 555 – 'Code of practice for protection against lightning'. The revised SS 555 comprises the following parts under the general title 'Protection against lightning':

- Part 1: General principles
- Part 2: Risk management
- Part 3 : Physical damage to structures and life hazard
- Part 4: Electrical and electronic systems within structures

The four parts replace the 2010 edition of the SS 555 series of standards.

SS 555 : Part 1 : 2018 is a modified adoption of IEC 62305-1 : 2010 (Edition 2.0), 'Protection against lightning – General principles'. It provides general principles to be followed for protection of structures against lightning, including their installations and contents, as well as persons.

The committee considered methods for artificially increasing the range of attraction of a lightning conductor but on the evidence available, was unable to make a recommendation. It was noted that none of the reference codes used in the drafting of this Code recommends the use of such methods. The codes referred to were IEC 62305 : 2010 Parts 1 to 4. In addition, there are no devices nor methods capable of modifying the natural weather phenomena to the extent that they can prevent lightning discharges. Lightning flashes to, or nearby, structures (or services connected to the structures) are hazardous to people, to the structures themselves, their contents and installations as well as to lines. This is why the application of lightning protection measures is essential.

Attention is drawn to the following:

- 1. Where appropriate, the words 'International Standard' shall be read as 'Singapore Standard'.
- 2. The references to International Standards shall be replaced by the following Singapore Standards:

International Standard	Corresponding Singapore Standard
IEC 62305	SS 555
IEC 62305-1	SS 555-1
IEC 62305-2	SS 555-2
IEC 62305-3	SS 555-3
IEC 62305-4	SS 555-4

- 3. The comma has been used throughout as a decimal marker whereas in Singapore Standards it is a practice to use a full point on the baseline as the decimal marker.
- 4. The <u>modifications</u> to IEC 62305-1 are given in <u>Annex ZA</u>. To facilitate identification, the affected text of the International Standard which is to be changed is indicated by a left marginal bar adjacent to it.

A national Annex ZB providing information on Singapore's lightning intensity is included to give the user data for risk management calculation which is essential for the appropriate design of a lightning protection system. Acknowledgement is made to the National Environment Agency for providing the information in Annex ZB and for their assistance in processing the data on lightning intensity.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROTECTION AGAINST LIGHTNING –

Part 1: General principles

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62305-1 has been prepared by IEC technical committee 81: Lightning protection.

This second edition cancels and replaces the first edition, published in 2006, and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- 1) It no longer covers protection of services connected to structures.
- 2) Isolated interfaces are introduced as protection measures to reduce failure of electric and electronic systems.
- 3) First negative impulse current is introduced as a new lightning parameter for calculation purposes.

4) Expected surge overcurrents due to lightning flashes have been more accurately specified for low voltage power systems and for telecommunication systems.

This bilingual version (2013-01) corresponds to the monolingual English version, published in 2010-12.

The text of this standard is based on the following documents:

FDIS	Report on voting
81/370/FDIS	81/380/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

The French version of this standard has not been voted upon.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all the parts in the IEC 62305 series, under the general title *Protection against lightning*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this standard may be issued at a later date.

INTRODUCTION

There are no devices or methods capable of modifying the natural weather phenomena to the extent that they can prevent lightning discharges. Lightning flashes to, or nearby, structures (or lines connected to the structures) are hazardous to people, to the structures themselves, their contents and installations as well as to lines. This is why the application of lightning protection measures is essential.

The need for protection, the economic benefits of installing protection measures and the selection of adequate protection measures should be determined in terms of risk management. Risk management is the subject of IEC 62305-2.

Protection measures considered in IEC 62305 are proved to be effective in risk reduction.

All measures for protection against lightning form the overall lightning protection. For practical reasons the criteria for design, installation and maintenance of lightning protection measures are considered in two separate groups:

- the first group concerning protection measures to reduce physical damage and life hazard in a structure is given in IEC 62305-3;
- the second group concerning protection measures to reduce failures of electrical and electronic systems in a structure is given in IEC 62305-4.

The connection between the parts of IEC 62305 is illustrated in Figure 1.

Figure 1 – Connection between the various parts of IEC 62305

PROTECTION AGAINST LIGHTNING –

Part 1: General principles

1 Scope

This part of IEC 62305 provides general principles to be followed for protection of structures against lightning, including their installations and contents, as well as persons.

The following cases are outside the scope of this standard:

- railway systems;
- vehicles, ships, aircraft, offshore installations;
- underground high pressure pipelines;
- pipe, power and telecommunication lines placed outside the structure.

NOTE These systems usually fall under special regulations produced by various specialized authorities.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62305-2:2010, Protection against lightning – Part 2: Risk management

IEC 62305-3:2010, Protection against lightning – Part 3: Physical damage to structures and life hazard

IEC 62305-4:2010, Protection against lightning – Part 4: Electrical and electronic systems within structures