

SINGAPORE STANDARD

Code of practice for long term measurement of central chilled water system energy efficiency

SS 591:2021

(ICS 27.200)

SINGAPORE STANDARD

Code of practice for long term measurement of central chilled water system energy efficiency

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© Enterprise Singapore 2021

ISBN 978-981-5042-34-4

SS 591:2021

Contents

Page

Foreword 4			
1	Scope	6	
2	Normative references	6	
3	Terms and definitions	7	
4	Description of measurement and verification (M&V) system	9	
5	Measurement and instrumentation requirements and recommendations	13	
6	Data collection, handling and presentation	17	
7	Testing and commissioning (T&C)	20	
8	Long term monitoring	25	
Annexe	es		
А	Examples of central chilled water system types and instrumentation	28	
В	Performance indicators and formulae	33	
С	Calibration of temperature sensor	37	
D	Installation of instrumentation	38	
Е	Instrumentation documents	40	
F	Abbreviations for common terms related to central chilled water system	46	
G	Example of a measurement and verification system in a central chilled water system	47	
Tables			
1	Maximum allowable uncertainty (%) for each and overall measurement system under laboratory conditions	14	
A.1	Symbols used in Figures A.1 to A.4	28	
C.1	Summary of calibration methods	37	
G.1	Data points	49	
G.2	Heat balance substantiating test	55	
G.3	Multi-point consistency check calculation: Temperature	57	
G.4	Multi-point consistency check calculation: Flow	59	
Figures	S		
A.1	Example of a constant primary air-cooled central chilled water system	29	
A.2	Example of a constant primary water-cooled central chilled water system	30	
A.3	Example of a variable primary water-cooled central chilled water system	31	
A.4	Example of a constant primary and variable secondary water-cooled central chilled water system	32	
D.1	Location of a magnetic in-line flow meter	38	

D.2 Installation of temperature sensor and additional test plug _____ 39

SS 591:2021

G.1	Example of a variable primary water-cooled central chilled water system	48
G.2	System heat balance check	56
G.3	Comparison of CHWR temperature readings between operating chiller 1 and header	58
G.4	Comparison of the sum of flow from individual chillers and the flow at the header	60

Foreword

This Singapore Standard was prepared by the Working Group on Long Term Measurement of Central Chilled Water System Energy Efficiency set up by the Technical Committee on Building Maintenance and Management under the purview of BCSC.

The standard is a revision of SS 591 : 2013 Code of practice for long term measurement of central chilled water system energy efficiency. The purpose of this standard is to enable an organisation to design and implement a measurement and verification system for the long term, continuous and accurate tracking of central chilled water system energy efficiency.

Central chilled water systems account for the lion's share of the energy consumption of most large buildings in the tropics. They are also the major energy consumers in industrial facilities.

When new systems are considered or when systems are retrofitted, the data from long term and continuous monitoring are vital for the correct sizing of plant components in order to optimise floor space, electrical and structural infrastructure as well as to reduce capital and operating costs. Measurement and verification (M&V) can also be used as an accountability tool to gauge the performance of the supplied equipment post installation. In addition, installation of a permanent M&V system can help to facilitate the reporting of the performance of the central chilled water system to relevant authorities.

The objectives of long term, continuous and accurate tracking of energy efficiency, important process parameters and relevant performance data of central chilled water system are to:

- a) generate useful and accurate chiller performance data for the proper operation, maintenance, sizing, and control of the system to improve energy efficiency, and to reduce greenhouse gas emissions and water consumption;
- allow buyers to specify energy efficiency requirements that are met and guaranteed by suppliers, Energy Services Companies (ESCOs), contractors, and designers of equipment and system;
- c) improve system reliability by enabling more effective maintenance and operations;
- d) reduce noise and vibrations from improper operation of chillers and other plant equipment;
- e) reduce chemicals and other materials usage; and
- f) extend the useful life of the plant and equipment.

The standard also subscribes to the general principles of international energy management system standards, such as ISO 50001 and its related guidance standards.

Permission has been sought from the International Organization for Standardization to reproduce materials from ISO/IEC 17025:2017, "General requirements for the competence of testing and calibration laboratories" (refer to the footnote in the standard). ISO standards can be purchased from Enterprise Singapore.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all of such patent rights.

NOTE

- Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "mature standards". Mature standards will not be subject to further review unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

Code of practice for long term measurement of central chilled water system energy efficiency

1 Scope

This code specifies the requirements for sensors and instruments in capturing relevant process parameters, their installation, commissioning, operational monitoring and maintenance in order to perform continuous, long-term measurement of central chilled water system energy efficiency.

This code also:

- a) specifies the appropriate uncertainty levels for continuous measurements of central chilled water system energy efficiency;
- b) specifies the parameters and performance indicators for continuous measurements;
- c) specifies installation details for easy comparison of sensor calibration and as-installed performance; and
- d) recommends the development of useful presentation formats for the data collected, to be used widely and on various platforms, including web-based platforms.

2 Normative references

The following referenced documents are indispensable for the application of this standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ASHRAE Guideline 14-2014	Measurement of energy, demand, and water savings
ASHRAE Guideline 22-2012	Instrumentation for monitoring central chilled-water plant efficiency
IEC 61869-2:2012	Instrument transformers – Part 2: Additional requirements for current transformers
IEC 61869-3:2011	Instrument transformers – Part 3: Additional requirements for inductive voltage transformers
IEC 61869-5:2011	Instrument transformers – Part 5: Additional requirements for capacitor voltage transformers
IEC 62053-22:2003	Electricity metering equipment (a.c.) – Particular requirements – Part 22: Static meters for active energy (classes 0,2 S and 0,5 S)
IEEE 519-2014	IEEE Recommended practices and requirements for harmonic control in electrical power systems
ISO 4185:1980	Measurement of liquid flow in closed conduits – Weighing method
ISO 8316:1987	Measurement of liquid flow in closed conduits – Method by collection of the liquid in a volumetric tank
ISO/IEC 17025:2017	General requirements for the competence of testing and calibration laboratories