(ICS 35.020; 35.110; 35.240.01)

SINGAPORE STANDARD IOT interoperability for Smart Nation

(ICS 35.020; 35.110; 35.240.01)

SINGAPORE STANDARD

Published by Enterprise Singapore

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilming, without permission in writing from Enterprise Singapore. Request for permission can be sent to: standards@enterprisesg.gov.sg.

© Enterprise Singapore 2023

ISBN 978-981-5118-67-4

Contents

Foreword		6
0	Introduction	7
1	Scope	7
2	Normative references	7
3	Terms, definitions and abbreviated terms	7
4	General	10
4.1	IoT in context	10
4.2	Guiding principles	12
4.3	High-level concerns	12
4.4	Architectural concepts	13
4.5	IoT interoperability concepts	16
4.6	IoT characteristics for interoperability	17
4.7	Interworking with other technologies	19
4.8	IoT trustworthiness	20
5	Requirements for IoT interoperability	21
5.1	Unique identification (UID)	21
5.2	Modularity (MOD)	23
5.3	Network connectivity (NCN)	24
5.4	Functional and management capability separation (FMS)	27
5.5	Well-defined components (WDC)	28
5.6	Composability (CPO)	31
5.7	Scalability (SCA)	32
5.8	Highly distributed systems (HDS)	34
5.9	Shareability (SHA)	36
5.10	Heterogeneity (HET)	38
5.11	Legacy support (LEG)	40
5.12	Data characteristics (DAT)	41
5.13	Accuracy (ACC)	43
5.14	Network communication (NCM)	44
5.15	Real-time capability (RTC)	47
5.16	Context-awareness (CTX)	48
5.17	Content-awareness (CTN)	50
5.18	Self-description (SFD)	52
5.19	Discoverability (DSC)	54
5.20	Network management and operation (NMO)	55
5.21	Manageability (MAN)	57
	2	

5.22	Auto-configuration (AUT)	58
5.23	Service subscription (SSU)	60
5.24	Flexibility (FLX)	61
5.25	Compliance (CPL)	63

Annexes

А	Recommended standards for IoT interoperability	65
В	Analysis of recommended standards	69
С	Case studies	76

Tables

1	IoT characteristics for interoperability	17
2	Examples of unique identification	21
3	Examples of modularity	23
4	Examples of network connectivity	25
5	Examples of functional and management capability separation	27
6	Examples of well-defined components	29
7	Examples of composability	31
8	Examples of scalability	33
9	Examples of highly distributed systems	35
10	Examples of shareability	36
11	Examples of heterogeneity	38
12	Examples of legacy support"	40
13	Examples of data characteristics	42
14	Examples of accuracy	43
15	Examples of network communication	45
16	Examples of real-time capability	47
17	Examples of context-awareness	49
18	Examples of content-awareness	50
19	Examples of self-description	52
20	Examples of discoverability	54
21	Examples of network management and operation	56
22	Examples of manageability	57
23	Examples of auto-configuration	59
24	Examples of service subscription	60
25	Examples of flexibility	62
26	Examples of compliance	63
A.1	Recommended standards	66
B.1	Overview of common standard interfaces	69
	3	

B.2	Mapping common standard interfaces to 6 aspects	69
B.3	Mapping common standard interfaces to IoT architectural characteristics	70
B.4	Mapping common standard interfaces to IoT functional characteristics	71
B.5	Overview of industry-specific standard interfaces	72
B.6	Mapping industry-specific standard interfaces to 6 aspects	72
B.7	Mapping industry-specific standard interfaces to IoT architectural characteristics	73
B.8	Mapping industry-specific standard interfaces to IoT functional characteristics	74
C.1	Architectural characteristics and requirements for passenger hub	76
C.2	Functional characteristics and requirements for passenger hub	77
C.3	Specific mappings for passenger hub	79
C.4	Architectural characteristics and requirements for public safety	82
C.5	Functional characteristics and requirements for public safety	83
C.6	Specific mappings for public safety	85
C.7	Architectural characteristics and requirements for smart facilities	87
C.8	Functional characteristics and requirements for smart facilities	88
C.9	Specific mappings for smart facilities	90
C.10	Architectural characteristics and requirements for smart residential township	92
C.11	Functional characteristics and requirements for smart residential township	93
C.12	Specific mappings for smart residential township	95
C.13	Architectural characteristics and requirements for contact tracing	97
C.14	Functional characteristics and requirements for contact tracing	98
C.15	Specific mappings for contact tracing	99

Figures

1	Examples of use cases for smart city applications	11
2	Typical deployment architecture	12
3	High-level concerns	13
4	IoT logical architecture	13
5	IoT interfaces for standardisation	15
6	IoT interoperability facets and aspects	16
7	IoT characteristics for interoperability and their relationships	18
8	IoT interworking with other technologies	19
9	Unique identification relationships	22
10	Modularity relationships	24
11	Network connectivity relationships	26
12	Functional and management capability separation relationships	28
13	Well-defined components relationships	30
14	Composability relationships	32
15	Scalability relationships	34
	4	

16	Highly distributed systems relationships	35
17	Shareability relationships	37
18	Heterogeneity relationships	39
19	Legacy support relationships	41
20	Data characteristics relationships	42
21	Accuracy relationships	44
22	Network communication relationships	46
23	Real-time Capability relationships	48
24	Context-awareness relationships	49
25	Content-awareness relationships	51
26	Self-description relationships	53
27	Discoverability relationships	55
28	Network management and operation relationships	56
29	Manageability relationships	58
30	Auto-configuration relationships	59
31	Service subscription relationships	61
32	Flexibility relationships	62
33	Compliance relationships	64
A.1	Summary of recommended standards	65
C.1	Overview of passenger hub solution	79
C.2	Selection of technologies for passenger hub	
C.3	High-level solution overview of passenger hub	
C.4	Sample sensor architecture	
C.5	Data sharing across the enterprise using standards	
C.6	Overview of public safety solution	
C.7	High-level solution overview of public safety	85
C.8	Overview of smart facilities solution	
C.9	High-level solution overview of smart facilities	91
C.10	Overview of smart residential township solution	94
C.11	High-level solution overview of smart residential township	95
C.12	Detailed functional architecture of smart residential township solution	96
C.13	Overview of contact tracing solution	99
C.14	High-level solution overview of contact tracing	100
C.15	System architecture of contact tracing	100
Diblica	reshu	400
סוומס	μανιγ	102

Foreword

This Singapore Standard was prepared by the Working Group on IoT Interoperability set up by the Technical Committee on IoT under the purview of the Information Technology Standards Committee.

This SS was developed to facilitate the sharing of IoT data, information, infrastructure and devices across multiple industry applications to support Singapore's Smart Nation vision, by providing design considerations and recommendations for common interface standards applicable for cross-domain applications and nation-wide deployments.

This SS aims to promote the use of IoT standards to lower the barriers of entry by technopreneurs, to foster the development of innovative solution, and to interwork collaboratively with other systems.

In preparing this standard, reference was made to the following publications:

- 1. ISO/IEC 20924:2021, Information technology Internet of Things (IoT) Vocabulary
- 2. ISO/IEC 30141:2018, Internet of Things (IoT) Reference architecture
- 3. ISO/IEC 21823-1:2019, Internet of Things (IoT) Interoperability for IoT systems Part 1: Framework

Permission has also been sought from the International Organization for Standardization for the reproduction and adaptation of materials from the standards cited in Clause 3 and ISO/IEC 30141:2018 (as Figures 4 and 5 of this standard).

Acknowledgement is made for the use of information from the above publications.

Attention is drawn to the possibility that some of the elements of this Singapore Standard may be the subject of patent rights. Enterprise Singapore shall not be held responsible for identifying any or all such patent rights.

NOTE

- 1. Singapore Standards (SSs) and Technical References (TRs) are reviewed periodically to keep abreast of technical changes, technological developments and industry practices. The changes are documented through the issue of either amendments or revisions. Where SSs are deemed to be stable, i.e. no foreseeable changes in them, they will be classified as "mature standards". Mature standards will not be subject to further review unless there are requests to review such standards.
- 2. An SS or TR is voluntary in nature except when it is made mandatory by a regulatory authority. It can also be cited in contracts making its application a business necessity. Users are advised to assess and determine whether the SS or TR is suitable for their intended use or purpose. If required, they should refer to the relevant professionals or experts for advice on the use of the document. Enterprise Singapore and the Singapore Standards Council shall not be liable for any damages whether directly or indirectly suffered by anyone or any organisation as a result of the use of any SS or TR. Although care has been taken to draft this standard, users are also advised to ensure that they apply the information after due diligence.
- 3. Compliance with a SS or TR does not exempt users from any legal obligations.

IoT interoperability for Smart Nation

0 Introduction

Connected devices such as smartphones, fitness trackers and remote health monitoring devices have continued to grow as the Internet of Things (IoT) connects more and more devices. As the number of connected devices increases, it is essential that devices, systems, and services from different organisations have some manner of interoperability between themselves to realise the full benefits of IoT.

A smart city is made up of both legacy systems and new projects from different domains. Standards play a critical role in enabling the interconnectivity of these legacy and green-field systems and the sharing of data and information among them.

1 Scope

This standard identifies common requirements for the interoperability of IoT systems, to support a variety of use cases and their integration. It also provides:

- guidance on a minimum set of coherent international and/or industry standards to achieve interoperability. For interoperability, this SS references the IoT architectural and functional characteristics, identified in ISO/IEC 30141:2018 Clause 7, but it does not cover the IoT characteristics for trustworthiness.
- guidance on how interoperability supports the desired characteristics of IoT.
- common requirements for the interoperability of IoT components and solutions.
- case studies to illustrate the recommendations.

It also recommends a minimal set of applicable IoT standards.

2 Normative references

There are no normative references in this standard.